
Prep
rin

t
Understanding Software Vulnerabilities

Related to Architectural Security Tactics
An Empirical Investigation of Chromium, PHP and Thunderbird

Joanna C. S. Santos∗, Anthony Peruma∗, Mehdi Mirakhorli∗, Matthias Galster†, Jairo Veloz Vidal∗, Adriana Sejfia∗
∗Rochester Institute of Technology, USA
†University of Canterbury, New Zealand

jds5109@rit.edu, axp6201@rit.edu, mxmvse@rit.edu, mgalster@ieee.org, jpv8322@rit.edu, axs1461@rit.edu

Abstract—To satisfy security requirements, software architects
often adopt security tactics. These architectural tactics provide
mechanisms for resisting, detecting, reacting to and recovering
from attacks. Consequently, flaws in the implementation of
security tactics or their deterioration during software evolution
and maintenance can introduce severe vulnerabilities that could
be exploited by attackers. However, we currently lack an in-depth
understanding of the types and impact of vulnerabilities related to
security tactics. Therefore, in this paper, we conduct a first-of-its-
kind in-depth case study involving three large-scale open-source
systems. We investigate the most common types of vulnerabilities
associated with security tactics, how frequently they may occur
over time, and how fixing them differs from fixing vulnerabilities
that are not related to security tactics. Key findings are (i) most
tactic-related vulnerabilities were related to the tactics “Validate
Inputs” and “Authorize Actors”, (ii) vulnerabilities related to
tactics have a similar distribution over time and software releases
as vulnerabilities that are not related to tactics, (iii) fixing tactic-
related vulnerabilities is not necessarily more complex than
fixing vulnerabilities that are not related to security tactics.
This study highlights the importance of ensuring an appropriate
implementation of security-related design decisions in code to
avoid vulnerabilities rooted in the architecture.

I. INTRODUCTION

Software engineers face a constantly growing pressure to
build secure software by design [9], where systems have to
be designed from the ground up to be secure and resistant
to attacks. To achieve this goal, software architects work
with various stakeholders to identify security requirements
and adopt appropriate architectural solutions to address these
requirements. These architectural solutions are often based on
security tactics [10]. Bass et al. [5] provide a comprehensive
list of such tactics and define security tactics as reusable so-
lutions to satisfy security quality attributes regarding resisting
attacks (e.g., tactic “Authenticate Actors”), detecting attacks
(e.g., tactic “Detect Intrusion”), reacting to attacks (e.g., tactic
“Revoke Access”), and recovering from attacks (e.g., tactic
“Audit”). As argued by Cervantes et al. [8], strategic, system-
wide architectural approaches result in the highest security and
lowest maintenance costs.

The importance of implementing architectural tactics cor-
rectly in the source code was highlighted in our earlier
work [17]. We found that even when suitable architectural

tactics are chosen upfront, developers—especially less experi-
enced ones—often struggle when implementing these tactics
in the code and implement tactics incorrectly, causing software
bugs. In particular, incorrect implementation of security tactics
or the deterioration of security tactics during coding and
maintenance activities [14], [17] can result in vulnerabilities
in the security architecture of the system, thus compromising
key security requirements. We refer to these vulnerabilities as
tactical vulnerabilities.

This means, despite significant efforts that go into designing
secure systems, security can slowly erode because of ongoing
maintenance activities. Even seemingly innocuous changes
made to the design can lead to degradation of security [23].

The code snippet in Listing 1 from a J2EE web application
shows an incorrect implementation of the “Manage User
Sessions” tactic [15]. The correct implementation of this tactic
in a web application would allow the system to keep track of
users that are currently authenticated (including permissions
they hold). However, in the given code snippet, the application
authenticates users with LoginContext.login() without
first calling HttpSession.invalidate() to invalidate
any existing session. This enables attackers to fixate (i.e., find
or set) another user’s session identifier (e.g., by inducing a user
to initiate a session using the session identifier provided by
the attacker). Once the user authenticates him/herself with this
forged session identifier, the attacker would be able to hijack
or steal his/her authenticated session. Although architects have
used the “Manage User Sessions” tactic in the architecture
design of the web application, the developers have failed to
implement it correctly, resulting in a tactical vulnerability that
can be exploited for session fixation attacks [25].

Recent empirical studies of security vulnerabilities have
neglected the architectural context, including design decisions
such as tactics and patterns [7], [11], [16]. They mostly
focus on studying and understanding coding issues related to
the management of data structures and variables (e.g., buffer
overflow/over-read).

Therefore, this paper reports an in-depth case study of soft-
ware vulnerabilities associated with architectural security tac-
tics across three large-scale open-source systems (Chromium,
PHP and Thunderbird). These three systems are among the

Prep
rin

t

Listing 1 Incorrect implementation of the tactic “Manage User
Sessions” in a J2EE web application resulting in session fixation
vulnerability

1 p r i v a t e vo id a u t h (L o g i n C o n t e x t l c , H t t p S e s s i o n
s e s s i o n , f i n a l P r i v i l e g e d A c t i o n <T> a c t i o n)
throws L o g i n E x c e p t i o n {

2 . . .
3 l c . l o g i n () ;
4 S u b j e c t s u b j e c t = l c . g e t S u b j e c t () ;
5 s e s s i o n . s e t A t t r i b u t e (” P r i v i l e g e d User ” , s u b j e c t)

; / / S t o r e t h e S u b j e c t i n H t t p S e s s i o n
6 S u b j e c t . doAs (s u b j e c t , a c t i o n) ; / / Run p r i v i l e g e d

a c t i o n a f t e r a u t h e n t i c a t e d
7 . . .
8 }

top 50 vulnerable software products [1]. The study took over
18 months, in which we collected and analyzed, for each
system, their source code, version control data, and bug data.
We also identified the security tactics used in these systems
and traced them to the source code. Furthermore, we extracted
and reviewed the complete list of vulnerabilities reported for
these three systems from the National Vulnerability Database
(NVD)1 and mapped these vulnerabilities to security tactics
to identify “tactical” and “non-tactical” vulnerabilities. A
rigorous process was used to collect and analyze the data
and to mitigate potential threats to the validity of our work,
and several vetting and peer-review mechanisms were imple-
mented. Using this data, we investigated the following research
questions towards understanding the relationship between se-
curity tactics and vulnerabilities in the source code:

• RQ1: What are the most common tactical vulnerabilities
in real software systems? We found that “Improper Input
Validation” is by far the most common vulnerability type
(or root cause of vulnerability) across Chromium, PHP
and Thunderbird. Moreover, security tactics of “Validate
Inputs” and “Authorize Actors” were the most affected
tactics with vulnerabilities.

• RQ2: How does the number of security vulnerabilities re-
lated to architectural tactics evolve over time? We found
that even though the absolute number of tactical and
non-tactical vulnerabilities differs, their numbers evolve
similarly over years and releases.

• RQ3: Are vulnerabilities related to tactics more complex
to fix compared to non-tactical vulnerabilities? We es-
timated “complexity to fix” as the code churn and the
total number of affected files when fixing a vulnerability.
We found that, with the exception of Thunderbird, code
churn and number of affected files is not higher nor lower
for tactical vulnerabilities. For tactical vulnerabilities in
Thunderbird, code churn is slightly higher while the
number of affected files is slightly lower.

The contribution of our work is two-fold:
• An empirically grounded mapping of known vulnera-

bilities to architectural tactics. This mapping allows us

1https://web.nvd.nist.gov/

to differentiate vulnerabilities based on their root cause,
e.g., vulnerabilities because of manipulation of data in
the code (e.g., buffer overflow/overread), or due to an
incorrect implementation of an architectural design deci-
sion in form of a security tactic. This paper presents the
first approach to identify vulnerabilities associated with
architectural tactics and to assess the existence of such
vulnerabilities in three large systems.

• An investigation on how tactical vulnerabilities differ
from other types of vulnerabilities (non-tactical), in terms
of root causes, complexity to fix and how frequently they
occur over the time.

The remainder of this paper is organized as follows: In
Section II we briefly introduce various concepts and terms
related to vulnerabilities to ensure that the essence of the paper
can be understood by a broader audience. Section III discusses
the methodology followed to conduct this study. Section IV
presents the results achieved. Section V discusses the results
observed. Section VI elaborates on threats to the validity of
this work. Section VIII concludes this paper.

II. SOFTWARE VULNERABILITIES

Vulnerabilities are security-related software defects that vio-
late the system’s security requirements. Software can become
vulnerable as a result of a defect that leads to a variety of
consequences, such as leakage of data and the modification of
data by unauthorized users. Software vulnerabilities are often
publicly disclosed and tracked in databases. The National Vul-
nerability Database (NVD)1 is an example of such databases.
It currently contains more than 80,000 vulnerabilities. Vul-
nerabilities recorded in the NVD are assigned a Common
Vulnerabilities and Exposures (CVE) identifier. Each CVE
instance provides details about the vulnerability. The following
excerpt retrieved from NVD shows a vulnerability in the PHP
project.

CVE ID: CVE-2011-3189
Overview: The crypt function in PHP 5.3.7, when the MD5 hash type is used,
returns the value of the salt argument instead of the hashed string, which might
allow remote attackers to bypass authentication via an arbitrary password, a
different vulnerability than CVE-2011-2483.
References: https://bugs.php.net/bug.php?id=55439, [...]
Affected Versions: PHP 5.3.7
Vulnerability Type Cryptographic Issues (CWE-310)
[...]

The vulnerability type (or root cause) indicates the cause
of security issues. It refers to an entry from a list of known
common software issues documented in the Common Weak-
ness Enumeration (CWE) catalog 2. This catalog is supported
by the U.S. Department of Homeland Security (DHS) and
maintained by the MITRE corporation. The CWE catalog is a
community-developed catalog of common types of weaknesses
in software that could introduce a breach that can be exploited
by attackers. These weaknesses can be introduced during
design, implementation, configuration, or other phases of the
software development cycle. Many of these weaknesses, such

2https://cwe.mitre.org

Prep
rin

t

as buffer overflow or buffer overread, are mainly due to mis-
takes in manipulating data structures. However, there are many
weaknesses in this catalog which are associated with security
tactics. These weaknesses are tactical vulnerabilities, as they
are either due to an incorrect adoption of security tactics or
violation of the tactic’s key principle in the source code. An
example of a tactical vulnerability was given in Listing 1.
Another example from the CWE catalog is “Exposure of Data
Element to Wrong Session” 3 which occurs when a product
does not sufficiently enforce boundaries between the states of
different sessions, causing data to be provided to or used by
the wrong session.

Using the information from the NVD, the CWE catalog,
software repositories, and the link between these sources of
information, it is possible to study the root causes of software
vulnerabilities in software systems. Furthermore, it is possible
to distinguish tactical vulnerabilities from purely coding bugs
(i.e., non-tactical vulnerabilities).

III. CASE STUDY SETUP

To answer our research questions from Section I, we con-
ducted an in-depth case study with three cases [20] based
on guidelines for industrially-based multiple-case studies [24].
The unit of analysis in our study was a software project.

A. Case Selection

We selected the following three open-source projects:
• Chromium 4 is the project of Google Chrome (web

browser). It is built on top of existing projects, e.g.
WebKit 5. It is ranked 4th among software products with
the most vulnerability disclosures [1].

• PHP 6 is the interpreter of the PHP programming lan-
guage. It is ranked 23rd among software products with
the most vulnerability disclosures [1].

• Thunderbird 7 is a cross-platform email, news, calendar,
and chat client. It is actively maintained by the Mozilla
foundation and ranked 15th among software products
with the most vulnerability disclosures [1].

These projects were selected because (i) they are widely
adopted by a large number of users, (ii) they are among
the top 50 software projects with the highest number of
vulnerabilities [1], (iii) they have adopted a wide range of
architectural tactics, and (iv) their development team uses an
issue tracking system for managing and fixing the defects.
Therefore, they provide a rich set of artifacts regarding the
software development activities conducted, security tactics
used, vulnerabilities discovered, and fixes to vulnerabilities.
Table I provides additional details about each system. The
three systems are rather diverse in size, age, and their appli-
cation domain. They are similar in that they are open-source
software systems and mostly implemented in C/C++.

3https://cwe.mitre.org/data/definitions/488.html
4http://www.chromium.org/
5http://webkit.org/
6http://php.net/
7http://mozilla.org/thunderbird/

Table I
DETAILS ABOUT THE STUDIED SYSTEMS

Chromium PHP Thunderbird
Size (LOC) >1,000K >4,000K >14,000K
Number of major
releases 56 18 22

Total contributors 5,223 423 889
Core contributors 1904 114 83

Age 9 years
started in 2008

22 years
started in 1994

18 years
started in 1998

Release cycle
(major releases) 6 weeks Yearly 6 weeks

Domain Web browser
Script

language for
web apps

Email,
calendar, chat

client
Language(s) Mostly C++ Mostly C Mostly C++
Vulnerabilities 705 531 1,380
Number of users ~1 billion ~244 millions ~9 millions

B. Data Collection

Since vulnerability data changes continuously, it is impor-
tant to note that our data collection process covers all the
data from the studied cases until the beginning of 2016. To
obtain the data required to answer our research questions, we
performed the following high-level steps:

1) Identification of security tactics for each of the three
projects (Section III-C)

2) Extraction of disclosed vulnerabilities for each of the
three projects from the NVD (Section III-D)

3) Classification of tactical and non-tactical vulnerabilities
following two complementary approaches to ensure ac-
curacy and completeness of the classification:

• Bottom-up (Section III-E)
• Top-down (Section III-F)

These steps relied on a broad range of data elements and
software development artifacts. Therefore, to help the reader
understand how we utilized these data elements and artifacts,
we present in Figure 1 an information model. This information
model shows each data element used in our study and the
relationships between data elements and to various software
development artifact repositories.

Figure 1. Data Extraction Information Model

C. Identifying Security Tactics in each Project

The first step of our study involved identifying the security
tactics used in the three projects. We performed several com-
plementary activities to ensure the accuracy of the extracted
tactics:

Prep
rin

t

Table II
SECURITY TACTICS IN CHROMIUM, PHP AND THUNDERBIRD

Identify A
ctors

V
alidate Inputs

M
anage U

ser
Sessions

A
uthenticate

A
ctors

A
uthorize A

ctors

Lim
it A

ccess

Lim
it Exposure

Encrypt D
ata

Separate Entities

C
hange D

efault
Settings

Inform
 A

ctors

D
etect D

enial of
Service A

ttack

D
etect Intrusion

V
erify M

essage
Integrity

A
udit

Chromium * * * * * * * * * * * * *
PHP * * * * * * * *
Thunderbird * * * * * * * * * *

1) We reviewed the available literature and technical docu-
mentations for each project (e.g., [4] for Chromium) to
look for any references to specific security tactics. We
then manually checked if these tactics occurred in the
code.

2) We manually browsed through the source files in each
project to identify tactic-related files.

3) We used search features of IDE’s to search through the
code using tactic-related keywords (e.g. “authenticate”).

4) We used a previously developed technique that automat-
ically reverse-engineers architectural tactics from source
code [15], [18].

The results from the above four activities were merged to
document the set of tactics used in each project. We then
obtained feedback from developers if they agree with the
identified tactics: For Chromium we received feedback from
the lead of the security team, and for PHP and Thunderbird, we
obtained feedback from two developers who contributed to the
implementations of the security tactics. The list of identified
security tactics for each project is shown in Table II.

D. Extracting Disclosed Vulnerabilities for each Project

Next, we retrieved CVEs for the three systems from the
NVD. Typically, each CVE entry records releases of the
software that were impacted by the vulnerability and provides
a link to the project’s Issue Tracking System. Furthermore, as
shown in the data extraction information model (Figure 1),
each CVE instance has a CWE tag, which identifies the root
cause of the vulnerability (see also example of a vulnerability
in PHP in Section II).

Completeness check: Not every CVE entry in NVD is
complete, i.e., it does not provide all the data we need for our
study (e.g. the patch that was released to fix the vulnerability).
Therefore, we conducted a manual analysis of the CVE
entries to verify whether the corresponding entries in the issue
tracking systems of the three projects were provided. In case
the NVD did not provide a link to the corresponding entry
in the issue tracking system, we searched over the project’s
bug repository using the CVE ID to verify that each CVE was
indeed acknowledged by the developers, fixed, and that the
fix was released. This manual analysis was conducted by three
researchers over a time span of a year. As a result, we collected
a total of 2,386 CVEs spanning across the lifetime of these
projects. From these vulnerabilities, 1,252 were related to the
Chromium project (since 2008 when the project started), 430
were associated with the PHP project published since 1997,
while 704 were in the Thunderbird project reported since 2002.

Table III
INSTRUCTIONS GIVEN TO THE EXPERTS TO CLASSIFY CVES

Is the error very low level? Yes No
Is the source code changed implemen�ng any security mechanisms
for Resisting , Detecting or Recovering from a poten�al a�ack?

Yes No

Is CVE in a tac�cal file? (Yes: Inves�gate) Yes No
Is CVE impac�ng the tac�c? Yes No
What is the name of the impacted tac�c?
Your decision: Tac�cal (Yes) / Non-tac�cal (No) Yes No

Instruc�ons
Steps: (i) Read the CVE descrip�on, (ii) Check the modified code: comments, changed
func�on/method/class, etc (iii) Read the bug tracking discussion (iv) Read the commit
message.
Examples of low level issues:
- Solely coding mistake
- An integer overflow / underflow
- Use of a pointer a�er free
- Incorrect calcula�ons of buffer sizes
Examples of tac�cal issues:
- Missing cri�cal step in the authen�ca�on tac�c
- Improper handling of insufficient permissions or privileges in authoriza�on tac�c
- Errors in tac�cal code and principles of the tac�c
- CVE violates a design decision made by the developer
- Missing encryp�on of sensi�ve data

Answer Sheet

Describe your ra�onale and provide evidence:

Eliminating invalid CVEs: During this process we dis-
carded invalid vulnerabilities, i.e., vulnerabilities that NVD
tags as deprecated or duplicated CVEs, or vulnerabilities
external to the studied cases (e.g. vulnerabilities in applica-
tions written in PHP rather than in PHP itself). Furthermore,
we discarded CVEs for which we could not identify their
corresponding entry in the issue tracking system or when the
issue was still marked as private,i.e., there were restrictions
that prevented issues being shown to the general public.

Tracing CVEs to patches: For each CVE that we collected
the corresponding defect entry in the project’s Issue Tracking
System, we obtained the patch that was released to fix the
vulnerability as well as the source files that were modified to
fix the vulnerability.

E. Bottom-up Approach to Identify Tactical Vulnerabilities

This approach relied on manually reviewing all CVE reports
of the studied projects to classify CVE’s as tactical or non-
tactical. To reduce the bias of a manual classification, we
performed a peer evaluation by two developers (one with
eight years of experience in software architecture and security
and the other with three years of experience in this field).
These subject matter experts manually analyzed all the CVEs
for each studied project and provided a rationale for their
decisions. To ensure consistency, each expert was provided
with instructions for classifying CVEs (see Table III).

Both subject matter experts also conducted detailed code
reviews to classify the CVEs. We provided the tactical files
(i.e., source files that implement tactics) in these projects and
a matrix indicating the overlap of CVEs and tactical files.
As described in Section III-C, we reverse-engineered security
tactics in the source code.

Prep
rin

t

Once each subject matter expert had finished their classifi-
cation, disagreements were discussed (based on each person’s
rationale) and resolved. Finally, the classifications of both
experts were consolidated into one dataset that contains for
each vulnerability the CVE ID, the Description, the Affected
Releases, its Root Cause (i.e., CWE), associated tactic (for
tactical vulnerabilities) and the Report Date.

F. Top-down Approach to Identify Tactical Vulnerabilities

This approach relied on the CWE catalog (see Section II) to
distinguish tactical and non-tactical vulnerabilities. This CWE
catalog defines known software weaknesses that can result in
software vulnerabilities and tags every type of vulnerability
(CWE) with information about when the vulnerability is
introduced (requirements, architecture, implementation etc.).
This provides clues if a CWE is due to an architectural or
coding issue. Also, since descriptions of CWEs are generic
and not specific to a project, they typically include the name
of security mechanisms (e.g. tactic/patterns) involved.

Thus, in this top-down approach we performed two steps:
• Step 1: We labeled CWEs as tactical or non-tactical.

This resulted in a gold standard for tactical vulnerability
types. This required the following steps:

– First, we obtained a list of all software vulnerability
types (CWE instances) from the CWE catalog.

– Then, we searched existing security tactics [5], [15]
and extracted information about the context in which
they can be applied, the solution proposed by the tac-
tic, related tactics, and the keywords that summarizes
a tactic.

– Based on this knowledge, we verified which CWEs
are caused by an incorrect implementation of a
security tactic or when a tactic is missing. This
verification was done through searching the tactic’s
name or keywords related to the tactic in the CWE
name and description. The result of this search is a
list of potential connections between security tactics
and generic software vulnerability types (CWEs). We
then manually inspect each CWE, to confirm whether
these connections indeed existed. At the end of this
step we created our gold standard, a catalog of
tactical and non-tactical CWEs.

• Step 2: We used the gold standard to classify CVEs
(see Figure 1 for connection between CVEs, CWEs and
tactics):

– Since vulnerabilities (CVEs) reported by NVD typ-
ically contain a CWE Tag describing the type of
software vulnerability, we could use these tags to au-
tomatically classify CVEs as tactical or non-tactical.

– In some cases the CVEs did not have a CWE tag
specified 8. Thus, we have used the links between Se-
curity Tactics, Source Files and CVEs and reviewed

8There were 182 CVEs in Chromium, 160 in PHP and 187 in Thunderbird
without CWE tags, which corresponds to 14.5%, 37.2% and 26.6% of their
CVEs, respectively.

the content of these artifacts to tag the CVE with the
most appropriate entry in our gold standard.

The steps described above have been vetted in a peer-
evaluation process. In this evaluation, four subject matter
experts worked independently analyzing each entry in the
CWE catalog to identify the ones that are tactic-related. Once
these four individuals finished their work, the results were
double-checked and disagreements were resolved. Following
this procedure, we have identified 223 common types of tac-
tical vulnerabilities among the 727 software weaknesses from
the CWE catalog. Table IV presents how many vulnerability
types (CWE instances) from the CWE catalog were mapped
to each security tactic.

Finally, we compared and merged the results of the bottom-
up and top-down approaches. Both approaches had a signifi-
cant agreement on the results. We observed 93.3% agreement
in Thunderbird, 90.2% in PHP and 88.3% in Chromium. The
disagreements occurred mainly because the CWE tag provided
to CVEs in the NVD does not have a consistent meaning: it
may indicate the specific root cause of the vulnerability (e.g
“CWE-798 Use of Hard-code Credentials”) or describe the
consequence of a vulnerability (e.g, “CWE-200 Information
Leak / Disclosure”), or it is at a higher-level of abstraction
(e.g., “CWE-17 Code” which describes vulnerabilities intro-
duced during coding), thereby it introduces mistakes in the
second step of this top-down approach. In a group review
session we resolved the disagreements and decided which
CVEs were tactical or non-tactical CVEs.

Table IV
TOTAL NUMBER OF CWES PER SECURITY TACTIC

Security Tactic # CWEs
Audit 6
Authenticate Actors 29
Authorize Actors 60
Cross Cutting 9
Encrypt Data 38
Identify Actor 1
Identify Actors 11
Limit Access 7
Limit Exposure 6
Lock Computer 1
Manage User Sessions 6
Validate Inputs 39
Verify Message Integrity 10

G. Data Analysis

RQ1 (most common tactical vulnerabilities): To answer this
question, we identified the most frequently occurring types of
tactical CVEs in each project and underlying security tactics.
RQ2 (tactical vulnerabilities over time): This question is
answered by observing the trend of these vulnerabilities over
the time and over releases.
RQ3 (complexity to fix vulnerabilities): We estimate the
complexity to fix a given vulnerability by analyzing the total
number of files and lines of code changed (modified, added, or
removed) to fix the vulnerability (code churn). This was done
by using the link to the issue tracking systems in each CVE
and by identifying the patches that fixed the vulnerability.

Prep
rin

t

IV. RESULTS

In this section, we first present an overview of the security
vulnerabilities identified in the three cases. Then, we present
the answers to our research questions.

Table V
OVERVIEW OF THE VULNERABILITY DATASET

Project #CVEs #Discarded #Analyzed #Tactical #Non-Tactical
Chromium 1252 303 949 403 546

PHP 430 267 163 63 100
Thunderbird 704 36 668 255 413

A. Overview

Table V shows the total number of vulnerabilities collected
(column #CVEs), the number of discarded and analyzed
vulnerabilities, and the number of tactical and non-tactical
vulnerabilities for each project. From 1,252 vulnerabilities in
Chromium, 430 in PHP, and 704 in Thunderbird, we discarded
303, 267 and 36 vulnerabilities, respectively, as explained in
Section III-E. From the vulnerabilities that we analyzed, 42.5%
of vulnerabilities in Chromium were tactical (403 CVEs),
making Chromium the project with the highest percentage of
tactical vulnerabilities (compared to Thunderbird and PHP).
The percentage of tactical vulnerabilities was 38.7% for PHP
(43 CVEs) and 38.2% for Thunderbird (255 CVEs).

Key findings:
• While Chromium, PHP and Thunderbird have

adopted a wide range of architectural tactics to
secure the systems by design, a remarkable number
of vulnerabilities discovered in these systems are due
to incorrect implementations of these tactics.

B. RQ1: Common Tactical Vulnerabilities

Table VI lists the the root causes (i.e., vulnerability types)
of tactical vulnerabilities in each of the three studied systems,
the related architecture tactics, as well as the total number of
CVEs caused by the given vulnerability type. The first result
of note is that Improper Input Validation (CWE-20) was the
most common vulnerability type in both PHP and Chromium,
while Improper Access Control (CWE-284) was the most re-
occurring vulnerability type in Thunderbird. Moreover, PHP’s
and Chromium’s second most common root cause was the
Inclusion of Functionality from Untrusted Control Sphere
(CWE-829), which is about reusing/importing vulnerable third-
party functionality. Chromium reuses code from the WebKit
project, which is a rendering web browser engine that currently
has 230 vulnerabilities disclosed in the NVD. In PHP, from
the 8 vulnerabilities caused by the inclusion of vulnerable
libraries, 7 were due to reusing code from the FileCommand
project9 while the remaining vulnerability was due to the
use code from the Libmbfl 1.1.0 project 10. Vulnerability
type CWE-829 also appears in the Thunderbird (at the 10th
position).

9https://github.com/file/file
10https://github.com/moriyoshi/libmbfl

Key findings:
• Improper Input Validation (CWE-20) and Improper

Access Control (CWE-284) are the most occurring
root causes for security vulnerabilities in Chromium,
PHP and Thunderbird.

• Vulnerabilities in the three studied systems are
mostly related to tactics “Validate Inputs” and “Au-
thorize Actors” for resisting attacks.

In Thunderbird these vulnerabilities occurred due to import-
ing libraries related to 2D graphics (Skia11), media-handling
(GStreamer12), font processing (Libgraphite13), and computer
graphics (Angle14).

Figure 2 shows the number of CVEs per tactic. Most of the
tactical issues in the studied cases are related to failing mech-
anism that validate inputs consistently and correctly, i.e., the
tactic “Validate Inputs” (CWE-20, CWE-59, CWE-74, CWE-
77, CWE-79, CWE-89, and CWE-94 in Table VI). Failing to
validate user inputs can lead to a variety of consequences,
such as crashes (denial of service) and leakage of sensitive
information. We also observe that vulnerabilities related to the
tactic “Authorize Actors” (CWE-266, CWE-269, CWE-274,
CWE-284, CWE-280, CWE-426, and CWE-862 in Table VI)
are common among the three systems.

Key findings:
• Security of studied projects was compromised by

reusing or importing vulnerable versions of third-
party libraries. In the case of Chromium such vul-
nerabilities occurred 106 times, while in Thunderbird
and PHP, 7 and 8 times, respectively.

Validate	
Inputs

Authoriz
e	Actors

Limit	
Exposur

e

Identify	
Actors

Limit	
Access

Encrypt	
Data

Authenti
cate	
Actors

Manage	
User	

Sessions
Audit

Verify	
Message	
Integrity

Chromium 155 82 106 26 17 7 7 0 2 1
PHP 36 10 8 0 5 2 0 2 0 0
Thunderbird 112 89 7 32 4 4 4 1 1 1
Total 303 181 121 58 26 13 11 3 3 2

0

50

100

150

200

250

300

Chromium
PHP
Thunderbird
Total

Figure 2. Number of CVEs per tactic for each system

C. RQ2: Tactical Vulnerabilities over Time and Releases
This question investigates how the number of security

vulnerabilities related to security tactics evolves over time,

11https://skia.org/
12https://gstreamer.freedesktop.org/
13http://scripts.sil.org/cms/scripts/page.php?site id=projects&item id=graphite home
14https://github.com/google/angle

Prep
rin

t

Table VI
MOST COMMON VULNERABILITY TYPES (ROOT CAUSES) IN THE STUDIED CASES

Tactic Vulnerability Type Chromium PHP Thunderbird Total
Validate Inputs CWE-20 Improper Input Validation 131 23 46 200
Limit Exposure CWE-829 Inclusion of Functionality from Untrusted Control Sphere 106 8 7 121
Authorize Actors CWE-284 Improper Access Control 35 – 51 86
Validate Inputs CWE-79 Improper Neutralization of Input During Web Page Generation (’Cross-site Scripting’) 12 1 31 44
Identify Actors CWE-346 Origin Validation Error 21 – 17 38
Validate Inputs CWE-94 Improper Control of Generation of Code (’Code Injection’) 5 1 30 36
Authorize Actors CWE-274 Improper Handling of Insufficient Privileges 19 – – 19
Identify Actors CWE-295 Improper Certificate Validation 5 – 11 16
Authorize Actors CWE-269 Improper Privilege Management 3 – 8 11
Authenticate Actors CWE-287 Improper Authentication 7 – 3 10
Authorize Actors CWE-426 Untrusted Search Path 2 – 8 10
Authorize Actors CWE-280 Improper Handling of Insufficient Permissions or Privileges 2 6 – 8
Authorize Actors CWE-266 Incorrect Privilege Assignment 1 – 7 8
Limit Access CWE-73 External Control of File Name or Path 3 4 – 7
Limit Access CWE-250 Execution with Unnecessary Privileges 4 1 – 5
Authorize Actors CWE-862 Missing Authorization 2 2 1 5
Validate Inputs CWE-59 Improper Link Resolution Before File Access (’Link Following’) – 2 1 3
Validate Inputs CWE-77 Improper Neutralization of Special Elements used in a Command (’Command Injection’) – 2 – 2
Validate Inputs CWE-89 Improper Neutralization of Special Elements used in an SQL Command (’SQL Injection’) – 2 – 2
Validate Inputs CWE-74 Improp. Neutraliz. of Spec. Elements in Output Used by a Downstream Component (’Injection’) – 1 – 1

Table VII
CORRELATION COEFFICIENTS: TACTICAL & NON-TACTICAL CVES

System Year Release
Chromium 0.767 0.836
PHP 0.583 0.915
Thunderbird 0.952 0.997

i.e., if the number tactic-related vulnerabilities increases, de-
creases, or remains constant. Figure 3 shows the number of
vulnerabilities (tactical and non-tactical) over the years they
were reported and Figure 4 shows these vulnerabilities over
the project’s releases.

Figure 3 shows that since 2012 vulnerabilities decreased
over the time for Chromium and Thunderbird. This trend is
confirmed when observing how vulnerabilities spread over
releases (Figure 4). The most recent releases had fewer vulner-
abilities than older ones. This indicates that even though over
time new features are added to both systems, more vulnerabili-
ties are removed than introduced by changing the code/adding
features. The results for PHP, however, follow an opposite
pattern; we observe a slight increase over the years (Figure 3).
Also, when looking at vulnerabilities across releases, there is
no clear trend that the number of vulnerabilities decreases with
new releases.

We calculated the correlation coefficient between tactical
and non-tactical vulnerabilities for the three systems to com-
pare the patterns of evolution (see Table VII). Since the
data were not normally distributed we used Spearman’s rho
correlation test. We found strong correlations between the
evolution of tactical and non-tactical vulnerabilities over the
years and releases for each system (p = 0 in all cases).

Key findings:
• Tactical and non-tactical vulnerabilities have a sim-

ilar distribution over time and releases, even though
the absolute numbers of tactical and non-tactical
vulnerabilities differ.

Table VIII
AVERAGE CODE CHURN WHEN FIXING VULNERABILITIES

Project Tactical vulnerability Non-Tactical vulnerability
Thunderbird 113.18 (min = 1; max = 515) 92.91 (min = 1; max = 603)
Chromium 66.48 (min = 0; max = 320) 51.83 (min = 0; max = 213)

PHP 28.22 (min = 1; max = 144) 42.36 (min = 2; max = 175)

Table IX
NUMBER OF AFFECTED FILES WHEN FIXING VULNERABILITIES

Project Tactical vulnerability Non-Tactical vulnerability
Thunderbird 4.04 (min = 1; max = 14) 4.23 (min = 1; max = 21)
Chromium 4.72 (min = 1; max = 17) 4.09 (min = 1; max = 12)

PHP 2.12 (min = 1; max = 6) 2.24 (min = 1; max = 4)

D. RQ3: Complexity to Fix Vulnerabilities

We estimated the complexity to fix a vulnerability in terms
of code churn and the total number of files affected by the fix.

1) Code Churn: In Table VIII we show the average number
of lines changed when fixing a vulnerability. For Thunderbird
and Chromium, average code churn appears to be higher
for tactical vulnerabilities. On the other hand, for PHP, non-
tactical vulnerabilities result in a higher code churn. We used
a Mann-Whitney test (as the data did not have a normal
distribution) to compare the code churn caused by fixing
tactical and non-tactical CVEs. In the case of Chromium and
PHP there was no statistically significant differences in the
code churn caused by fixing tactical and non-tactical CVEs,
while for Thunderbird the results were statistically significant
(p = 0.043).

2) Affected Files: Table IX shows the average number of
affected files for each system. Thunderbird and PHP show on
average fewer affected files for fixing tactical vulnerabilities,
while in Chromium, fixing tactical vulnerabilities affects more
files. A Mann-Whitney test to compare the number of af-
fected files when fixing tactical and non-tactical vulnerabilities
showed no statistically significant difference for any of the
three systems.

Prep
rin

t
0

20

40

60

80

100

120

140

2008 2009 2010 2011 2012 2013 2014 2015

#	
CV

Es
Reported	Vulnerablities	
for	 Chrom	Over	 the	Years

Tactical Non-tactical

0

5

10

15

20

25

30

2000 2002 2004 2006 2008 2010 2012 2014

#	
CV

Es

Reported	Vulnerablities	
for	 PHP	Over	the	Years

Tactical Non-tactical

0

20

40

60

80

100

120

2002 2004 2006 2008 2010 2012 2014

#	
CV

Es

Reported	Vulnerabilities	
for	 Thunderbird	Over	the	Years

Tactical Non-tactical

Figure 3. Occurrence of vulnerabilities (tactical and non-tactical) over the time for the case studies

0

50

100

150

200

250

0.x 2.x 4.x 6.x 8.x 10.x12.x14.x16.x18.x20.x22.x24.x26.x28.x30.x32.x34.x36.x38.x40.x42.x44.x46.x48.x

Number	of	Vulnerabilities	Impacting	
Major	Releases	in	Chromium

Tactical Non-tactical

0

50

100

150

200

250

0.
x

1.
x

2.
x

3.
x

5.
x

6.
x

7.
x

8.
x

9.
x

10
.x

11
.x

12
.x

13
.x

14
.x

15
.x

16
.x

17
.x

24
.x

31
.x

38
.x

Number	of	Vulnerabilities	Impacting	
Major	Releases	in	Thunderbird

Tactical Non-tactical

0

10

20

30

40

50

1.
x

2.
x

3.
x

4.
0.
x

4.
1.
x

4.
2.
x

4.
3.
x

4.
4.
x

5.
0.
x

5.
1.
x

5.
2.
x

5.
3.
x

5.
4.
x

5.
5.
x

5.
6.
x

7.
x

Number	of	Vulnerabilities	
Impacting	Major	Releases	in	PHP	

Tactical Non-tactical

Figure 4. Vulnerabilities over the releases of the systems

Key findings:
• When fixing tactical vulnerabilities, there is no sta-

tistically higher or lower code churn compared to
fixing non-tactical vulnerabilities.

• When fixing tactical vulnerabilities, the number of
affected files is not statistically significantly higher or
lower compared to fixing non-tactical vulnerabilities.

V. DISCUSSION

A. Vulnerability Types and Tactics

We highlighted commonalities and differences between
studied systems in Section IV. In this section, we discuss why
these vulnerabilities (and related tactics) appear.

• Some security tactics are more fragile and harder to
implement: From the results we noted that a large num-
ber of tactical vulnerabilities in all three projects were
related to the lack of the “Validate Inputs” tactic when it
would have been needed, or the incorrect implementation
of this tactic. Input validation problems are more perva-
sive and not limited to a specific domain. Software will
always be provided with inputs, which may be valid or
malformed (intentionally by attackers or unconsciously
by misuses from legitimate users). Vulnerabilities related
to input validation issues can happen in any software
system. They result in attacks related to SQL injection,
Command Injection, data manipulation, and other similar
issues such as Cross-Site Scripting.

• Some tactical vulnerabilities are more prevalent in a
domain: Chromium has significantly more vulnerabilities
related to the tactic “Limit Exposure” than PHP and
Thunderbird. Partially this is because of the domain of
Chromium as a web browser. “Limit Exposure” is about
reducing the number of entry points of a system where
an attacker can try to enter data to or extract data from a
software process. This is particularly relevant for a web
browser that has built-in processes for interacting with
add-ins, add-ons (often from third parties), client-side
scripts, and other web applications. Similarly, frequent

vulnerabilities in Thunderbird have been impacted by its
domain as a mail client.

B. Implications for Practitioners
Generalizability and applicability of findings: As argued
by Wieringa, describing the context of the studied cases as in
Table I allows us to “generalize” our findings by analogy (i.e.,
our findings may apply to projects and systems that are similar
to the cases of this study) [26]. We also discuss generalizability
in Section VI when we acknowledge validity threats.
Recommendations for architecture practice: Based on the
findings from the case study, we follow an inductive ap-
proach [26] and infer several recommendations:

• Track external components: “Reuse” versus “devel-
opment from scratch” is a common design decision to
reduce cost and time to market. However, as shown in
our findings for RQ1, security can be compromised by
reusing or importing vulnerable versions of third-party
libraries. Therefore, if a project reuses components (code,
libraries, etc.) either entirely or partially from an external
source, it is important to keep track of (i) which compo-
nents are being used, (ii) which parts of the software these
components interact with, (iii) if these components have
a known vulnerability, and (iv) if critical data, resources,
or process of the system are exposed to attackers by
integration of the third-party component.

• Trace architectural decisions to code: As we have
shown in Section IV-A, nearly half of vulnerabilities in
Chromium were due to tactical issues. This means that
while it is important to design and evaluate a robust
security architecture, it is even more important to ensure
that the security architecture is implemented correctly
and there is no violation or drift from the principles
of an intended architecture [14]. Tracing the tactics to
source code [19], monitoring evolution of architectural
decisions in the source code [15], [18] and writing test
cases to ensure their correctness can help prevent tactical
vulnerabilities.

• Follow tactic-centric approach to security: By knowing
the type of tactical vulnerability that can impact the

Prep
rin

t

security architecture of a software, we can plan targeted
testing and assurance strategies to mitigate the security
risks of the system.

• Educate developers in architecture principles: A recent
survey of over 1,400 developers [3], indicated that 80
percent of developers missed questions about tactics and
mechanisms for protecting sensitive data and 74 percent
missed questions on identifying root cause of software
vulnerabilities. The findings for our RQ1 supports the
results of this survey that while appropriate design deci-
sions were made by architecture (e.g. “Authorize Actors”)
the developers failed to correctly implement many of
these design decisions, resulting severe vulnerabilities.
Therefore, it is important to train the developers about the
security architecture principles, tactics and vulnerabilities
associated with them.

C. Implications for Software Architecture Research

Our study has several implications for software architecture
research. These implications are mainly pointers towards fu-
ture work. For example, while we observed a common trend
of when tactical and non-tactical vulnerabilities are reported
(see RQ2), our study does not offer an explanation of why this
common trend exists. This could be due to many factors, e.g.,
size and age of systems, developer communities, contributors,
etc. Also, given that Chromium implements the most tactics
(compared to PHP and Thunderbird) but also has the highest
number of tactical vulnerabilities, gives the impression that
implementing tactics introduces vulnerabilities. However, our
study does not explain the reasons for these vulnerabilities.
Therefore, additional explanatory studies are required in the
future. More specifically, future work has two major thrusts: (i)
We need to conduct further empirical studies to determine the
severity of tactical vulnerabilities and the cost associated to
fixing them, (ii) We need to perform longitudinal empirical
studies of tactical vulnerabilities to understand how such
security problems develop over time, what factors contribute
to tactical vulnerabilities and how we can detect/prevent them.

VI. THREATS TO VALIDITY

This section discusses validity threats based on a validation
scheme presented by Runeson and Hoest [20] (construct,
internal and external validity).

Construct validity is about how accurately the applied op-
erational measures truly represent the concepts that researchers
are trying to study. In our study, these included the measures
used to identify tactical and non-tactical vulnerabilities, see
(Section III). To perform this identification, we leveraged
on the vulnerabilities tracked by the NVD along with data
from bug and issue tracking systems of Chromium, PHP, and
Thunderbird. Therefore, our analysis relies on the accuracy of
the data reported in these systems and we may have missed
vulnerabilities that were not tracked by the NVD or we had
to discard because we could not find the corresponding entry
in the issue tracking system or the issue was still private by
the time of our study.

Internal validity reflects the extent to which a study
minimizes systematic error or bias so that a causal conclusion
can be drawn. The primary threat is related to the manual
analysis of CVE instances in order to observe the nature of
security design issues and to identify tactical and non-tactical
vulnerabilities. To mitigate this threat, we performed top-down
and bottom-up classification of vulnerabilities (see Section III).
Moreover, we conducted a peer review process, in which two
individuals analyzed vulnerabilities and shared their rationale
with each other to resolve disagreements. Parts of this peer
review also included practitioners. Hence, we consider that
such peer evaluation minimized the impacts of biases and
mistakes by the manual inspection of CVEs.

External validity evaluates the generalizability of our find-
ings and how they can be generalized to other systems (see
Section V-B). There are two threats in this respect. Firstly,
we analyzed the historical vulnerability reports from three
systems (PHP, Chromium, and Thunderbird), which are mostly
implemented in C/C++. We do not aim for statistical gener-
alization, but analytical generalization: we carefully selected
the three cases from different software domains and with
a higher number of reported vulnerabilities. Therefore, we
expect the systems to be representative of a typical software
engineering environment. Also, when discussing our results,
we highlighted which findings are specific to a system and
which findings apply to all systems. Secondly, we identified
the root causes based on a subset of types of vulnerabilities
from the CWE catalog (Section III-F). Thus, we acknowledge
that it may not be complete, i.e., that it does not include
all possible ways that developers can implement tactics in-
correctly. However, this subset comes from a community-
established list of possible types of security issues that have
been observed and documented in the real world.

VII. RELATED WORK

Existing research in software architecture for security has
mainly proposed techniques for facilitating the design of the
security architecture [13], the analysis and evaluation of the
existing security architecture [12], [21] as well as identifying
potential threats/vulnerabilities from the architecture [2], [6],
[27] . While these works can aid architects to identify existing
threats and to appropriately adopt security patterns/tactics
into a system, such activities may not be enough to avoid
vulnerabilities, as the implementation of design decisions may
be incorrect or erode over the time.

To help avoid deterioration of the security architecture
during software maintenance, Taspolatoglu and Heinrich [23]
described an approach that extended architecture description
languages to formally document security requirements. While
this work recognized that the implementation of security
decisions may erode overtime and result in vulnerabilities,
unlike our work, it did not provide evidence on how frequently
such problems occur and how complex it is to fix them.

Ryoo et al. [22] evaluated to which extent security tactics
are being used in open-source systems and whether there
are discrepancies between the original design and the actual

Prep
rin

t

implementation. Their findings suggested that developers are
not strictly implementing the original design envisioned by ar-
chitects and that only a subset of tactics are being implemented
in systems (such as “Encrypt Data”). While in our work we
also analyzed the usage of security tactics in three case studies,
our main goal was to investigate how vulnerabilities are caused
by incorrect adoption of these tactics in the code.

Feng et al [9] investigated the relationship between design
rule violation and vulnerabilities. They observed that the files
that contain a higher number of design rule violations are
highly correlated to vulnerabilities as well as high levels of
code churn when fixing such security bugs. However, unlike
our work, they investigated the files that contain modularity
violation against vulnerabilities, whereas we traced the vul-
nerabilities rooted in an improper implementation of security
tactics and inspected what their root causes were, how they
occurred over time, and efforts to fix them.

Despite the research community efforts to facilitate the
design decisions for developing more secure software and to
study vulnerabilities from an architectural perspective, there
is a gap for an in-depth study that addresses the problem of
investigating how security tactics are being incorrectly imple-
mented in the code. Furthermore, to the best of our knowledge,
there is no previous work that provides evidence on what the
common root causes of such incorrect implementations are
and the corresponding efforts to fix them.

VIII. CONCLUSION

This paper has presented a first-of-its-kind empirical study
towards understanding software vulnerabilities related to secu-
rity tactics. We identified tactical and non-tactical vulnerabil-
ities in three software systems. While most vulnerabilities are
non-tactical, on all three systems more than 30% were tactical.
Furthermore, while the number of tactical and non-tactical
vulnerabilities differ, the rate at which they are reported over
time and across releases develops similarly. Finally, when
fixing vulnerabilities, code churn and number of affected files
are not significantly higher for Chromium and PHP, but for
Thunderbird, code churn is slightly higher while the number
of affected files is slightly lower for tactical vulnerabilities.

ACKNOWLEDGMENTS

This work was partially funded by the US National Sci-
ence Foundation under grant numbers CCF-1543176, CNS-
1629810 and IIP-0968959 under funding from the S2ERC
I/UCRC program and US Department of Homeland Security.

REFERENCES

[1] Top 50 products having highest number of cve security vulnerabilities.
https://www.cvedetails.com/top-50-products.php.

[2] S. Al-Azzani and R. Bahsoon. Secarch: Architecture-level evaluation and
testing for security. In 2012 Joint Working IEEE/IFIP Conference on
Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pages 51–60. IEEE, 2012.

[3] I. Aspect Security. 2014 state of developer application security
knowledge report. https://www.aspectsecurity.com/the-2014-state-of-
developer-application-security-knowledge-report-landing-page.

[4] A. Barth, C. Jackson, C. Reis, T. Team, et al. The security architecture
of the chromium browser, 2008.

[5] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, 2012.

[6] B. J. Berger, K. Sohr, and R. Koschke. Extracting and analyzing
the implemented security architecture of business applications. In
17th European Conference on Software Maintenance and Reengineering
(CSMR), pages 285–294. IEEE, March 2013.

[7] A. Bosu and J. C. Carver. Peer code review to prevent security
vulnerabilities: An empirical evaluation. In 7th International Conference
on Software Security and Reliability Companion, pages 229–230. IEEE,
2013.

[8] H. Cervantes, R. Kazman, J. Ryoo, D. Choi, and D. Jang. Architectural
approaches to security: Four case studies. IEEE Computer, 49:60–67,
2016.

[9] Q. Feng, R. Kazman, Y. Cai, R. Mo, and L. Xiao. Towards an
architecture-centric approach to security analysis. In 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA), pages 221–
230, 2016.

[10] E. B. Fernandez, H. Astudillo, and G. Pedraza-Garcı́a. Revisiting
architectural tactics for security. In 9th European Conference on
Software Architecture (ECSA), pages 55–69, 2015.

[11] M. Hafiz and M. Fang. Game of detections: how are security vulnera-
bilities discovered in the wild? Empirical Software Engineering, pages
1–40, 2015.

[12] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Ar-
chitectural risk analysis of software systems based on security patterns.
IEEE Transactions on Dependable and Secure Computing, 5(3):129–
142, 2008.

[13] T. Heyman, R. Scandariato, and W. Joosen. Reusable formal models
for secure software architectures. In Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint
Working IEEE/IFIP Conference on, pages 41–50. IEEE, 2012.

[14] C. Izurieta and J. M. Bieman. How software designs decay: A pilot
study of pattern evolution. In ESEM, pages 449–451, 2007.

[15] J. C.-H. Mehdi Mirakhorli. Detecting, tracing, and monitoring architec-
tural tactics in code. IEEE Trans. Software Eng., 2015.

[16] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates. When a patch goes bad: Exploring the properties of
vulnerability-contributing commits. In 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, pages
65–74. IEEE, 2013.

[17] M. Mirakhorli and J. Cleland-Huang. Modifications, tweaks, and bug
fixes in architectural tactics. In Proceedings of the 12th Working
Conference on Mining Software Repositories, pages 377–380. IEEE
Press, 2015.

[18] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and J. Cleland-
Huang. Archie: A tool for detecting, monitoring, and preserving archi-
tecturally significant code. In CM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE 2014), 2014.

[19] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic
centric approach for automating traceability of quality concerns. In
International Conference on Software Engineering, ICSE (1), 2012.

[20] P. Runeson and M. Hoest. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14:131–164, 2009.

[21] J. Ryoo, R. Kazman, and P. Anand. Architectural analysis for security.
IEEE Security & Privacy, (6):52–59, 2015.

[22] J. Ryoo, B. Malone, P. A. Laplante, and P. Anand. The use of
security tactics in open source software projects. IEEE Transactions
on Reliability, 65(3):1195–1204, Sept 2016.

[23] E. Taspolatoglu and R. Heinrich. Context-based architectural security
analysis. In 13th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), pages 281–282, 2016.

[24] J. Verner, J. Sampson, V. Tosic, N. A. A. Bakar, and B. Kitchenham.
Guidelines for industrially-based multiple case studies in software
engineering. In Third IEEE International Conference on Research
Challenges in Information Science, pages 313–324, 2009.

[25] C. Visaggio. Session management vulnerabilities in today’s web. IEEE
Security & Privacy, (5):48–56, 2010.

[26] R. Wieringa. Design Science Methodology for Information Systems and
Software Engineering. Springer, 2014.

[27] E. Yuan and S. Malek. Mining software component interactions to
detect security threats at the architectural level. In Software Architecture
(WICSA), 2016 13th Working IEEE/IFIP Conference on, pages 211–220.
IEEE, 2016.

