
Re(gEx|DoS)Eval: Evaluating Generated Regular Expressions and
their Proneness to DoS Attacks

Mohammed Latif Siddiq
msiddiq3@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Jiahao Zhang∗

jzhang38@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Lindsay Roney
lroney@nd.edu

University of Notre Dame

Notre Dame, IN, USA

Joanna C. S. Santos
joannacss@nd.edu

University of Notre Dame

Notre Dame, IN, USA

ABSTRACT

With the recent advances in code generation techniques based on
Large Language Models (LLMs), developers are using them for a
vast range of tasks, including regex generation. Despite the efforts to
generate regexes from natural language, there is no benchmark for
LLMs with real-world data and robust test sets. Moreover, a regex
can be prone to Denial of Service (DoS) attacks due to catastrophic
backtracking. Hence, we need a systematic evaluation process to
evaluate the correctness and security of the regexes generated by
the language models. In this paper, we describe Re(gEx|DoS)Eval,
a framework that includes a dataset of 762 regex descriptions
(prompts) from real users, refined prompts with examples, and
a robust set of tests. We introduce the pass@k and vulnerable@k
metrics to evaluate the generated regexes based on the functional
correctness and proneness of ReDoS attacks. Moreover, we demon-
strate the Re(gEx|DoS)Eval with three LLMs (T5, Phi, and GPT-3)
and describe the future plans to extend this framework.

CCS CONCEPTS

• Software and its engineering → State based definitions; • Secu-
rity and privacy → Denial-of-service attacks.

KEYWORDS

Regex Generation, ReDoS, DoS Attack, Evaluation, Dataset

∗J. Zhang was a visiting student at ND from SUSTech (Southern University of Science
and Technology) when this research was performed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0500-7/24/04. . . $15.00
https://doi.org/10.1145/3639476.3639757

ACM Reference Format:

Mohammed Latif Siddiq, Jiahao Zhang, Lindsay Roney, and Joanna C. S.
Santos. 2024. Re(gEx|DoS)Eval: Evaluating Generated Regular Expressions
and their Proneness to DoS Attacks. In New Ideas and Emerging Results
(ICSE-NIER’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3639476.3639757

1 INTRODUCTION

With the recent release of GitHub Copilot [1] and ChatGPT [2],
software engineers are increasingly relying on these AI assistants
to develop software. In fact, a recent survey with 500 US-based de-
velopers who work for large-sized companies showed that 92% of
them are using AI coding tools both for work and personal use [27].
Part of this fast widespread adoption is due to the increased produc-
tivity perceived by developers; AI helps them automate repetitive
tasks to focus on higher-level challenging tasks [38].

One common repetitive task faced by developers is to write regular
expressions (“regexes”) to search strings or validate inputs. With the
popularity of AI assistants, developers are using them to generate
their regexes. Although these tools can help programmers in writ-
ing regexes, the produced expressions may be not only incorrect but
also prone to denial-of-service attacks (i.e., Regex Denial-of-Service
- ReDoS) [10, 28]. A ReDoS attack exploits certain expression pat-
terns that can lead to catastrophic backtracking, causing operations
to take a long time to complete. Given the ubiquity of regexes,
especially for input validation, these vulnerabilities can cripple a
software system’s performance when triggered [22].

Although prior works studied ReDoS attacks [10, 22] and whether
AI assistants generate functionally correct code [8, 9, 24], we cur-
rently lack an in-depth understanding of how well AI assistants
can generate regular expressions that are correct and safe against
ReDoS. The literature also lacks a benchmark dataset for systemati-
cally evaluating generated regexes both in terms of their correctness
and their proneness to ReDos attacks. Existing datasets used for
natural language to regex generation [16, 21] are synthetic datasets,
i.e., they do not simulate the real-world users’ needs, which can
have more complex descriptions [37].

https://orcid.org/0000-0002-7984-3611
https://orcid.org/0009-0008-8379-6871
https://orcid.org/0009-0009-9854-7437
https://orcid.org/0000-0001-8743-2516
https://doi.org/10.1145/3639476.3639757
https://doi.org/10.1145/3639476.3639757

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Mohammed Latif Siddiq, Jiahao Zhang, Lindsay Roney, and Joanna C. S. Santos

Therefore, this paper aims to address these research gaps by de-
veloping Re(gEx|DoS)Eval, a framework to systematically

evaluate the security and correctness of generated regular ex-

pressions. At the core of Re(gEx|DoS)Eval, is a novel benchmark
dataset of real regex-related problems along with a set of robust test
cases that are used to evaluate a regular expression’s correctness.
To measure a regex’s security, this framework relies on state-of-
the-art techniques [19, 28] to generate exploits and use those to
evaluate the expression’s proneness to ReDoS attacks.

The key contributions of this paper are: (i) a framework for eval-
uating generated regexes, (ii) a novel metric (vulnerable@k) that
measures a regex’s proneness to ReDoS attacks, and (iii) a prelim-
inary empirical study that uses our framework to investigate the
regexes generated by four models. All the scripts and datasets are
released on GitHub: https://github.com/s2e-lab/RegexEval.

2 BACKGROUND AND RELATEDWORK

Prior works focused on regex generation from examples and/or
descriptions. For example, AlphaRegex [17] generated regexes by
pruning out a large search space based on approximation. Regex-
Generator++ [6] used a genetic algorithm to generate a regex. Kush-
man and Barzilay [16] used semantic unification to generate regexes
from descriptions. Deep-Regex [21] used an LSTM-based [12] ap-
proach with a new comparatively large synthetic dataset. SemRegex
[36] used reinforcement learningwithDeep-Regex [21]. TransRegex
[20] improves the policy gradient by ensuring the validity of gen-
erated regex by rewarding the model for generating valid regex.
InfeRe [35] used the chain of inference by considering generating a
regex from a description as a sequential cognitive process.

Although regexes are widely used, prior works [10, 22] have shown
the potential for denial-of-service attacks (i.e., ReDoS attacks). A
ReDoS attack occurs when an attacker exploits the exponential time
complexity inherent in certain regex patterns, causing the regex
engine to enter a state of catastrophic backtracking [19, 28],
resulting in denial of service or severe performance degradation.
To illustrate, consider the regex /A(B|C+)+D/ that matches a string
that starts with 'A', ends with 'D', and in the middle there can be
at least one 'B' or multiple 'C's. This expression is prone to ReDoS
attacks when encountering inputs similar to "ACCCCCCC...CX" [4].
This is caused by the nested quantifiers, which have the potential
to trigger catastrophic backtracking.

Prior works aimed to detect vulnerable regexes using static and
dynamic analysis. RXXR2 [26] transformed regex to the power
DFA (Deterministic Finite Automata) and searched attack strings
on that. Rexploiter [33] detects a vulnerable regex by combining
complexity analysis of Nondeterministic Finite Automata (NFA)
with sanitization-aware taint analysis. ReScue [28] uses a genetic
algorithm on a targeted regex to develop expansive seed strings and
create a malicious string by using pumping and a search algorithm.
ReDoSHunter [19] used static and dynamic analysis to locate all
possible vulnerabilities and generate malicious strings.

3 RE(GEX|DOS)EVAL OVERVIEW

AI code assistants are evaluated using benchmarks [9, 29, 34] which
do not include constructs to evaluate the correctness and security

of generated regular expressions. Thus, this paper describes the cre-
ation and evaluation of Re(gEx|DoS)Eval, a framework for verify-
ing and benchmarking the performance of Large Language Models
(LLMs) with respect to generating regular expressions. As shown
in Fig. 1, our framework is created in three major steps.

3.1 Dataset Collection

We mined (on Aug. 16th, 2023) all the regexes from RegExLib, a reg-
ular expression library [5]. We use this library because it contains
user-contributed regular expressions. We obtained from RegExLib
a list of 4,128 regular expressions along with their id, description,
and list of expected matches and non-match strings.

3.2 Manual Validation

For each sample previously collected, we perform a manual valida-
tion to (1) filter out incorrect regexes, (2) create more sample test
cases (i.e., matching and non-matching string examples), and (3)

create refined problem descriptions (i.e., prompts).

3.2.1 Filtering RegEx Samples. Weexcluded any regex thatmatched
one or more of the following conditions: (i) it was missing any
metadata i.e., description, and/or list of expected matches and non-
matches; (ii) its description is not written in English; (iii) its descrip-
tion included vulgar words; (iv) its description does not provide
sufficient information to understand the purpose of the regular
expression; (v) it aimed to detect just one word; (vi) it is incorrect
(i.e., the regex matches a string that is not supposed to match, or it
does not match a string that is expected to match). After this step,
we have 1,001 regex samples.

3.2.2 Creating New Test Cases and Refined Prompts. Each collected
regex sample had (on average) only 4 string examples (2 that are
expected matches and 2 that are expected non-matches). Thus, we
manually crafted additional test cases to ensure that each sample
has at least 13 matching1 and 12 non-matching string examples.
After creating these additional test strings, we evaluate the regex
with the new set of test cases again and excluded the failed regex
samples. Hence, we have 762 samples in our final dataset.

3.2.3 Prompt Creation. Upon further inspection of the descriptions
in the extracted samples, we observed that some of them lacked a
more detailed explanation (e.g., ID#84: “SQL date format tester.”) or
had extra information unrelated to the regex (e.g., ID#4: “... Other
than that, this is just a really really long description of a regular
expression that I’m using to test how my front page will look in the
case where very long expression descriptions are used”). Thus, we
created a refined prompt with a clear description of the regex and
that includes three match and two non-match string examples, as
shown in the JSON snippet in Figure 2.

3.3 Systematic Model Evaluation

To systematically evaluate the correctness and security of a regex
produced by an LLM, our framework has an evaluation environment
and an automated assessment component.

1We could not create at least 13 matches for problems that had a strict matching pattern
(e.g., a regex that matches only one digit has only 10 match examples).

https://github.com/s2e-lab/RegexEval

Re(gEx|DoS)Eval: Evaluating Generated Regular Expressions and their Proneness to DoS Attacks ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

Systematic Model Evaluation
Evaluation Environment

LLM
Assessment/'.*'/

Regex

Metrics
- Vulnerable@k
- Pass@k
- DFA-EQ@k

timeout

Dataset Collection

Data
Extraction

Initial dataset

RegExLib.com

-id
-regex
-description
-non-matches
-matches

Manual Validation

Filtering

Filtered samples

-id
- description
- matches
- non-matches
- regex

Test
Creation

[{"id": …
 "expression": "…"
 "original_prompt": "…"
 "re�ned_prompt": "…"
 "matches": […]
 "non_matches": […]
 },…]

Prompts

Prompt
Creation

"matches":
 […]
"non_matches":
 […]

Figure 1: Overview of our Framework Re(gEx|DoS)Eval

{"id": 879,
"expression":"^([1-9]{0,1})([0-9]{1})(\\.[0-9])?$",
"original_prompt":"Matches numbers 0 through 99.9. Allows only one preceding zero and does not
require the decimal point",
"refined_prompt":"Matches numbers in the format of a single digit, with an optional leading di-
git in the range 1-9 and an optional decimal part consisting of a period followed by one digit.
- Match examples: \"1\", \"1.1\", \"0.1\"
- Non-match examples: \"01\", \"01.1\"",
"matches":["1", "1.1", "0.1", "4.8", "6.5", "1.4", "8.4", "9.8", "3.2", ...],
"non_matches":["01", "01.1", "0.10", "000151", "0051156", "0.215413", ...] }

Figure 2: Example of a RegEx Problem from our Dataset

3.3.1 Evaluation Environment. Our framework provides the run-
time environment to compile and test the generated regexes. This
environment is composed of a Python script that takes as input
both the regexes generated by an LLM and the list of strings that
are expected to match/not match for the regexes. This script first
compiles each generated regex using the re library [3]. If the compi-
lation is successful, it tests the generated regex with a user-defined
timeout using the strings from the list of matches and non-matches.
Moreover, this script also runs two state-of-the-art techniques
(Rescue [28] and ReDoSHunter [19]) to generate strings that trig-
ger catastrophic backtracking. If these tools successfully generate a
malicious string, it means the generated regex is prone to ReDos at-
tacks. Thus, for each generated regex, the output of our evaluation
environment is a list of failed/passed tests and the malicious strings
generated by Rescue [28] and/or ReDoSHunter (if any).

3.3.2 Regex Assessment. This component computes three metrics
to measure the correctness and one metric for security of the gener-
ated regexes.

▶Measuring Correctness: Prior works [21, 35] measured the cor-
rectness of a generated regex based on (i) the ratio of exact matching
(EM) to the reference solution and (ii) the equivalence between the
regex’s and the solution’s deterministic finite automaton (DFA-EQ).
Thus, this component computes these metrics as follows:

–Exact Match (EM): It measures how many generated regexes
are equal to the solution in our dataset (e.g., if 15 out of 20 generated
regexes are equal to their reference solution, then EM=75%).

–DFA-EQ@k: Two regexes are semantically equivalent if they have
the same minimal DFA [13]. Thus, the DFA-EQ@k measures the
percentage of instances in which there is at least one regex that
is semantically equivalent to the ground truth among the top k-
produced regexes. To clarify, consider that we have 10 problems
and a model produces 10 regexes for each of these problems. If there
are 6 problems for which at least one minimal DFA matched within
the top 5 solutions, then the DFA-EQ@5 score will be 60%.

Although the EM and DFA-EQ@k metrics were widely used in
prior works, they cannot account for the large and complex space of
regexes that are functionally equivalent to a reference solution [37].
For example, if a user asks an LLM to generate a regex that detects
an IP address (but does not clarify their hidden intention is to detect

IPv4 addresses), then the LLM may generate a regex that matches
both IPv4 and IPv6 addresses. This means that the generated regex is
correct but will not match the DFA or regex in the reference solution.
Hence, we need a metric for evaluating the functional correctness
of the generated regex that measures the correctness with respect
to passing test cases (i.e., an execution-based measurement). Chen
et al. [9] introduced the pass@k metric to evaluate the functional
correctness of a generated code. Thus, we use a similar approach
to evaluate the correctness of a generated regex. Specifically, to
compute the pass@k, we instruct the model to generate 𝑘 regexes
for each problem. If at least one of the regexes passes all test cases,
then the model succeeded in solving the problem. The pass@k
measures the fraction of problems solved by the model.

▶Measuring Security: We introduce vulnerable@k, a new
metric to measure the security of a generated regex. We consider a
problem to be vulnerable if any of the top-k generated regexes is
prone to ReDos attacks. A regex is considered prone to attacks if
either Rescue [28] or ReDoSHunter [19] generated one or malicious
strings. The model is better if the vulnerable@k is lower.

For 𝑝𝑎𝑠𝑠@𝑘 and 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒@𝑘 , we consider the problem to be func-
tionally correct or vulnerable if any of the top-k regexes pass all
the tests or is vulnerable, respectively. However, computing these
metrics in this way can have high variance [9, 15]. Instead, to eval-
uate 𝑝𝑎𝑠𝑠@𝑘 and 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑙𝑒@𝑘 , we generate n ≥ k samples per
problem, count the number of correct samples 𝑐 ≤ 𝑛 that is func-
tionally correct or vulnerable, and calculate the unbiased estimator

from Kulal et al. [15]: 𝑚𝑒𝑡𝑟𝑖𝑐@𝑘 := E𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠

[
1 − (𝑛−𝑐𝑘)

(𝑛𝑘)

]
. Since

calculating this estimator directly results in large numbers and
numerical instability, we used a numerically stable implementation
from Chen et al. [9] that simplifies the expression and evaluates the
product term-by-term. Notice that we did not calculate the DFA-
EQ@k with the unbiased estimator to keep the metric as described
in the previous literature [16].

4 EXPERIMENTS & EARLY RESULTS

We used Re(gEx|DoS)Eval to conduct a preliminary empirical study
to answer two research questions:

RQ1 How well can LLMs generate regular expressions? In this
question, we study the correctness of the regex generated by
existing LLMs.

RQ2 Are LLM-generated regexes prone to ReDos attacks? In
this RQ, we investigate to what extent the regexes generated
by LLMs are prone to ReDoS attacks.

We used fourmodels from three LLM families to answer the RQs:

– Fine-tuned T5 [25]: The Text-to-Text transformer (T5) [25] is
an attention-based transformer model [32]. We used the T5-base

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Mohammed Latif Siddiq, Jiahao Zhang, Lindsay Roney, and Joanna C. S. Santos

model (220 million parameters) fine-tuned with a popular synthetic
dataset of regular expressions (KB13 [16]).

–Pre-trained Phi-1.5 [18]: It is a languagemodel equippedwith 1.3
billion parameters, primarily trained on a highly refined synthetic
“textbook-quality” dataset.

– Generative Pre-trained Model (GPT-3) [7]: It is a transformer-
based [32] and task-agnostic model capable of both understand-
ing and generating natural language. We used the Text-DaVinci-
003 (an upgraded version for text generation) and GPT-3.5-Turbo
(which is tuned for chat-style conversation and powers a popular
chat-based question-answering tool, ChatGPT [2]). The June 2023
version of the GPT-3.5-Turbo was used in this work.

For the fine-tuned T5 model, we gave as input both the original
prompt and the refined prompt for each of the 762 problems in our
dataset. However, since the GPT-3 models are task-agnostic, we
added an instruction after the description to make it clear that we
want the model to generate a regex for the described problem (i.e.,
“<problem description here>. Generate a regex for this description:”).
Since the phi-1.5 model is expecting either a Q&A-style, chat-
style, or code-style prompt, we prefix the prompt with a slightly
modified similar instruction (i.e., ending with a full-stop) as the
GPT-3 models and add in the end the following text “Answer:”, to
make it a question-answering prompt. For the Phi-1.5 model, we had
to clear the output after generating the regex because this model
generated an explanation after the regex delimited by \n\n.

We set the temperature to 0.8, as prior works [8, 9] have shown
that it ensures variation in the output for the same prompts while
achieving good performance. We kept the other parameters with
their default values and instructed all the models to generate 10
regular expressions with a maximum of 128 new tokens for each of
the 762 problems in our framework. After generating the regexes,
we used our approach’s evaluation environment to compile and test
all the expressions. Consistent with prior works [19, 35], we used
a 60-second timeout. In our experiment, we use 𝑘 = 1, 3 and 10 to
compute the dfa-eq@k, pass@k, and vulnerable@k.

4.1 RQ1: RegEx Generation Performance

Table 1 shows the percentage of regexes that were unparsable
out of 7,620 regexes (= 762 problems × 10 outputs) generated by
each model. Text-DaVinci-003 and GPT-3.5-Turbo generated more
compilable and correct regexes. The refined prompts improve the
performance for the Text-DaVinci-003 model, whereas, for the GPT-
3.5-Turbo, the performance is similar for both types of prompts. The
opposite occurred for the Phi-1.5 model i.e., the original prompts
perform better than the refined prompts. Another thing is that the
value of the DFA-EQ@k metric is lower than the pass@k metric.
That indicates that despite not having semantic similarity, different
regexes can solve problems described by natural language.

4.2 RQ2: Proneness to ReDoS

Table 2 summarizes the results. The first two rows indicate the
percentage of vulnerable regexes identified by each tool out of
7,620 regexes. The next three rows indicate the vulnerable@k
score from ReScue [28], and the following three rows present the
vulnerable@k score from ReDoSHunter [19]. We found that the

Table 1: RegEx generation correctness performance (RQ1).

Fine-tuned

T5

Pre-trained

Phi-1.5

Text-

DaVinci-003

GPT-3.5-

Turbo

Original Refined Original Refined Original Refined Original Refined

Unparseable 62.68% 59.68% 24.58% 34.99% 14.57% 14.73% 11.55% 11.71%
EM (%) 0% 0% 1.1% 1.8% 16.7% 23.4% 33.9% 33.1%

DFA-EQ@1 0.3% 0.0% 1.4% 0.0% 7.6% 10.1% 11.8% 10.4%
DFA-EQ@3 0.4% 0.0% 2.4% 2.4% 11.3% 14.3% 15.5% 15.0%
DFA-EQ@10 1.1% 0.13% 6.3% 5.6% 15.4% 17.2% 19.2% 18.8%

pass@1 0.1% 0.03% 2.3% 1.7% 17.6% 27.0% 33.4% 33.6%
pass@3 0.1% 0.1% 5.4% 4.3% 26.7% 37.4% 44.5% 44.4%
pass@10 0.1% 0.3% 10.9% 9.7% 35.4% 46.3% 52.5% 52.9%

fine-tuned T5 not only has a lower performance based on correct-
ness but it also generates more ReDoS-vulnerable regexes. Phi-1.5
and both GPT-3 models produce a similar number of ReDoS vulnera-
ble regexes. It is important to highlight that ReDoSHunter performs
better than the ReScue tool.

Table 2: Proneness to ReDoS attacks (RQ2)

Fine-Tuned

T5

Pre-trained

Phi-1.5

Text-DaVinci

-003

GPT-3.5-

Turbo

Original Refined Original Refined Original Refined Original Refined

ReScue 0.17% 0.12% 0.16% 0.07% 0.54% 0.28% 0.28% 0.22%
ReDoSHunter 44.02% 47.81% 6.25% 5.12% 3.64% 3.56% 3.50% 3.19%
vul@1𝑅𝑒𝑠𝑐𝑢𝑒 0.17% 0.12% 0.16% 0.06% 0.54% 0.28% 0.28% 0.22%
vul@3𝑅𝑒𝑠𝑐𝑢𝑒 0.82% 0.53% 0.79% 0.33% 1.77% 1.09% 1.14% 1.00%
vul@10𝑅𝑒𝑠𝑐𝑢𝑒 1.57% 0.91% 1.57% 0.66% 2.76% 1.71% 1.84% 1.71%

vul@1𝑅𝑒𝐷𝑜𝑆𝐻𝑢𝑛𝑡𝑒𝑟 44.23% 47.81% 6.25% 5.12% 3.64% 3.56% 3.50% 3.19%
vul@3𝑅𝑒𝐷𝑜𝑆𝐻𝑢𝑛𝑡𝑒𝑟 67.52% 72.53% 16.42% 13.14% 6.90% 5.88% 6.20% 5.73%
vul@10𝑅𝑒𝐷𝑜𝑆𝐻𝑢𝑛𝑡𝑒𝑟 84.78% 87.53% 38.45% 30.31% 11.68% 9.58% 9.84% 9.19%

5 CONCLUSION & FUTURE PLANS

Generating a regular expression from descriptions can be useful for
automating tasks, such as data validation, string search etc.With
the recent development of the LLMs, users can automate regex
generation. In this paper, we described Re(gEx|DoS)Eval, a system-
atic approach to benchmark the LLMs for this particular task and
their proneness to the ReDoS vulnerability. In the future, we aim to
make a more robust, explainable, extendable framework for regex
generation benchmarking using language models.

Future Plans. LLMs are trained on a vast amount of public data,
making them susceptible to data contamination issues [11]. Indeed,
when looking at Table 1, we observe that (surprisingly) GPT-3.5-
turbo generatedmore correct regexes when it was given the original
prompt instead of the manually curated detailed prompt. This could
be an early indication that the model mined these regexes from the
RegexLib and memorized the answer. Thus, we will investigate the
mitigation from a prior work [11] for this type of issue while ex-
tending our framework. To mitigate this, we will release it publicly
in a binary format as suggested by Jacovi et al. [14].

To extend this work, we also plan to collect more regex prob-
lems from StackOverflow, by finding questions where users are
struggling with regexes that are taking too long to finish (a com-
mon symptom of ReDoS). Subsequently, we will study more recent
LLMs (e.g., LLAMA [31] and investigate how inference parameters
(e.g., temperature, maximum generation length etc.), and different
prompting styles as the previous literature [23, 30] are contributing
factors that lead to more correct/secure generated regexes.

Re(gEx|DoS)Eval: Evaluating Generated Regular Expressions and their Proneness to DoS Attacks ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] 2022. GitHub Copilot. Accessed Dec 7, 2022. https://github.com/features/copilot
[2] 2023. Chat completions. Accessed Mar 25, 2023. https://platform.openai.com/

docs/guides/chat
[3] 2023. re — Regular expression operations. https://docs.python.org/3/library/re.

html [Online; accessed 11. Sep. 2023].
[4] 2023. ReDoS | Tutorials & Examples | Snyk Learn. https://learn.snyk.io/lesson/

redos [Online; accessed 15. Sep. 2023].
[5] 2023. Regular Expression Library. https://regexlib.com [Online; accessed 11.

Sep. 2023].
[6] Alberto Bartoli, Andrea De Lorenzo, Eric Medvet, and Fabiano Tarlao. 2016. Infer-

ence of Regular Expressions for Text Extraction from Examples. IEEE Transactions
on Knowledge and Data Engineering 28, 5 (2016), 1217–1230.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901.

[8] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang
Lou, and Weizhu Chen. 2023. CodeT: Code Generation with Generated Tests.
In The Eleventh International Conference on Learning Representations. https:
//openreview.net/forum?id=ktrw68Cmu9c

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[10] James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: An
Empirical Study at the Ecosystem Scale. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). Association for Computing Machinery, 246–256.

[11] Jamie Hayes and Olga Ohrimenko. 2018. Contamination attacks and mitigation in
multi-party machine learning. Advances in neural information processing systems
31 (2018).

[12] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
computation 9 (12 1997), 1735–80.

[13] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to
automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),
60–65.

[14] Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. 2023. Stop upload-
ing test data in plain text: Practical strategies for mitigating data contamination
by evaluation benchmarks. arXiv preprint arXiv:2305.10160 (2023).

[15] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex
Aiken, and Percy S Liang. 2019. SPoC: Search-based Pseudocode to Code. In
Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran
Associates, Inc.

[16] Nate Kushman and Regina Barzilay. 2013. Using semantic unification to generate
regular expressions from natural language. North American Chapter of the
Association for Computational Linguistics (NAACL).

[17] Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Synthesizing Regular Expressions
from Examples for Introductory Automata Assignments. SIGPLAN Not. 52, 3 (oct
2016), 70–80.

[18] Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar,
and Yin Tat Lee. 2023. Textbooks Are All You Need II: phi-1.5 technical report.
arXiv:2309.05463 [cs.CL]

[19] Yeting Li, Zixuan Chen, Jialun Cao, Zhiwu Xu, Qiancheng Peng, Haiming Chen,
Liyuan Chen, and Shing-Chi Cheung. 2021. ReDoSHunter: A Combined Static
and Dynamic Approach for Regular Expression DoS Detection. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 3847–3864.

[20] Yeting Li, Shuaimin Li, Zhiwu Xu, Jialun Cao, Zixuan Chen, Yun Hu, Haiming
Chen, and Shing-Chi Cheung. 2021. TransRegex: Multi-Modal Regular Expression

Synthesis by Generate-and-Repair. In Proceedings of the 43rd International Confer-
ence on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 1210–1222.

[21] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and
Regina Barzilay. 2016. Neural Generation of Regular Expressions from Natural
Language with Minimal Domain Knowledge. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics (ACL), Austin, Texas, 1918–1923.

[22] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Francisco
Servant. 2019. Regexes are Hard: Decision-Making, Difficulties, and Risks in Pro-
gramming Regular Expressions. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 415–426.

[23] Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023. Retrieval-Based Prompt Selec-
tion for Code-Related Few-Shot Learning. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). 2450–2462.

[24] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. ICLR (2023).

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[26] Asiri Rathnayake and Hayo Thielecke. 2014. Static analysis for regular expression
exponential runtime via substructural logics. CoRR abs/1405.7058 (2014).

[27] Inbal Shani. 2023. Survey reveals AI’s impact on the developer experience | The
GitHub Blog. GitHub Blog (June 2023). https://github.blog/2023-06-13-survey-
reveals-ais-impact-on-the-developer-experience/#methodology

[28] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018. ReS-
cue: crafting regular expression DoS attacks. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 225–235.

[29] Mohammed Latif Siddiq and Joanna C. S. Santos. 2022. SecurityEval Dataset:
Mining Vulnerability Examples to Evaluate Machine Learning-Based Code Gen-
eration Techniques. In Proceedings of the 1st International Workshop on Mining
Software Repositories Applications for Privacy and Security (Singapore, Singapore)
(MSR4P&S 2022). Association for Computing Machinery, New York, NY, USA,
29–33. https://doi.org/10.1145/3549035.3561184

[30] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin
Ulfat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2023. Exploring the Effective-
ness of Large LanguageModels in Generating Unit Tests. arXiv:2305.00418 [cs.SE]

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL]

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[33] Valentin Wüstholz, Oswaldo Olivo, Marijn JH Heule, and Isil Dillig. 2017. Static
detection of DoS vulnerabilities in programs that use regular expressions. In
Tools and Algorithms for the Construction and Analysis of Systems: 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, Part II 23. Springer, 3–20.

[34] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang,
Ying Li, Tao Xie, and Qianxiang Wang. 2023. CoderEval: A Benchmark of Prag-
matic Code Generation with Generative Pre-trained Models. arXiv preprint
arXiv:2302.00288 (2023).

[35] Shuai Zhang, Xiaodong Gu, Yuting Chen, and Beijun Shen. 2023. InfeRE: Step-
by-Step Regex Generation via Chain of Inference.

[36] Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu,
and Dongmei Zhang. 2018. SemRegex: A Semantics-Based Approach for Gener-
ating Regular Expressions from Natural Language Specifications. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Brussels, Belgium, 1608–1618.

[37] Zexuan Zhong, Jiaqi Guo, Wei Yang, Tao Xie, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2018. Generating regular expressions from natural language
specifications: Are we there yet?. In AAAI Workshops. 791–794.

[38] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
Assessment of Neural Code Completion. In Proc. of the 6th ACM SIGPLAN Int’l
Symposium on Machine Programming (San Diego, CA, USA) (MAPS 2022). ACM,
New York, NY, USA, 21–29. https://doi.org/10.1145/3520312.3534864

https://github.com/features/copilot
https://platform.openai.com/docs/guides/chat
https://platform.openai.com/docs/guides/chat
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://learn.snyk.io/lesson/redos
https://learn.snyk.io/lesson/redos
https://regexlib.com
https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2309.05463
http://jmlr.org/papers/v21/20-074.html
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://doi.org/10.1145/3549035.3561184
https://arxiv.org/abs/2305.00418
https://arxiv.org/abs/2302.13971
https://doi.org/10.1145/3520312.3534864

	Abstract
	1 Introduction
	2 Background and Related work
	3 Re(gEx|DoS)Eval Overview
	3.1 Dataset Collection
	3.2 Manual Validation
	3.3 Systematic Model Evaluation

	4 Experiments & Early Results
	4.1 RQ1: RegEx Generation Performance
	4.2 RQ2: Proneness to ReDoS

	5 Conclusion & Future Plans
	References

