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Abstract

Architectural tactics are the building blocks of software architecture. They de-
scribe solutions for addressing specific quality concerns, and are prevalent across
many software systems. Once a decision is made to utilize a tactic, the developer
must generate a concrete plan for implementing the tactic in the code. Unfortunately,
this is a non-trivial task even for experienced developers. Developers often resort to
using search engines, crowd-sourcing websites, or discussion forums to find sample
code snippets to implement a tactic. A fundamental problem of finding implementa-
tion for architectural patterns/tactics is the mismatch between the high-level intent
reflected in the descriptions of these patterns and the low-level implementation de-
tails of them. To reduce this mismatch, we created a novel Tactic Search Engine
called ArchEngine (ARCHitecture search ENGINE). ArchEngine can replace this
manual, internet-based search process and help developers to reuse proper architec-
tural knowledge and accurately implement tactics and patterns from a wide range
of open source systems. ArchEngine helps developers find implementation examples
of tactic for a given technical context. It uses information retrieval and programing
analysis techniques to retrieve applications that implement these design concepts.
Furthermore, it lists the code snippets where the patterns/tactics are located. Our
case study with 21 professional software developers shows that ArchEngine is more
effective than other search engines (e.g. SourceForge and Koders) in helping pro-
grammers to quickly find implementations of architectural tactics/patterns.
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1. Introduction

In order to speed up development process, many programmers reuse existing code.
Often they find that there are generic functionalities that other programmers wrote
and these fragments can be reused. Socio-technical websites such as StackOverflow,
and code search engines (e.g. Google Code, Koders) are the primary resources that
developers often use for finding and reusing source code or even for getting ideas
on how to implement a feature. However, this can be challenging when it comes to
reusing architecturally significant codes [24] –code snippets that implement architec-
tural patterns [8] and tactics [3]. A fundamental problem is related to the difficulties
of identifying and tagging architectural patterns and tactics in the source code of a
project. As a result, the current search engines such as Google Code, Koders or even
those developed in academia [18] fail to incorporate these design concepts in their
underlying search algorithms.

With the increasingly adoption of iterative incremental software development
practices and integration of coding and design activities, there is a growing need
for search engines that helps developers identify and reuse code snippets related to
the architectural patterns/tactics. In a simple search through the web, one can find
several examples of online posts made by developers requesting help in online forums
because they did not understand how to implement specific patterns/tactics. Figure
1 shows three examples of such questions. One developer is seeking help regarding the
generic implementation of a Pooling tactic in C#. While two others are looking for
specific implementation of tactics in particular context/technology. One developer
wants to implement role-based access control along with Struts framework, while the
third one is seeking samples to implement heartbeat reliability tactic between clients
and a server.

These examples show that typically developers’ query for a sample tactical code
has two parts, (i) the desired tactic and (ii) a particular context or technology in
which the tactic needs to be implemented. Therefore, a search engine not only need
to identify and index occurrence of architectural tactics, it also need to identify the
technical context in which the tactic is implemented. State of the art, in the area
of enhancing code reuse, relies on application of data-mining and natural language
processing (NLP) techniques to build source code recommender systems [17], and
search engines [5, 7, 28]. However, the primary intend of these techniques is retrieving
generic functional code and not tactical code. Moreover, these techniques do not
differentiate between the search concept and the technical context where the concept
is implemented.

Difficulty of detecting architectural patterns/tactics as well as challenges for iden-
tifying the technical context within the source code of a project are the two main

2



Figure 1: Developers seek help in online forums to implement architectural patterns/tactics

reasons that the notion of reusing architecturally significant source code is not well
explored in the software architecture community.

In this paper, we address these limitations by presenting and rigorously validating
ArchEngine, a novel search engine designed for retrieving architecturally significant
code snippets. ArchEngine supports the developers in finding and reusing relevant
source files that implement an architectural tactic using a particular technology.The
users search request is reflected in query terms (i.e., Authentication using Sprint
Framework over HTTP channel).

To build a source code search engine for architectural tactics, ArchEngine: (i)
relies on a novel text-based classification technique to automate the discovery, ex-
traction and indexing of architectural tactics across 116,609 open-source systems.
(ii) It implements a big data compatible architecture to search efficiently through
22 million source files of these projects. (iii) It uses information retrieval [12] and
structural analysis techniques [26, 13] to detect tactics and to identify the technical
context in which the tactic has been used. Lastly, (iv) it utilizes a novel ranking
algorithm to order the retrieved tactical files based on both tactic-correctness and
relevancy to the technical context stated in the users query.
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In our case study, 21 professional developers evaluated the accuracy and practi-
cality of the ArchEngine. The results show, with strong statistical significance, that
users find more relevant tactical code snippets with higher precision with ArchEngine
than other search engines such as SourceForge, Open Hub, Krugle and GitHub.
ArchEngine is available for public use at 1.

The remainder of this paper is structured as follows. Sections 3 and 4 describe the
process of mining and indexing the source code of 116,609 open source projects. Sec-
tions 5 and 6 describe detection of architectural tactics and implementation/technical
context in open source projects. Sections 7 and 8 describe the ranking algorithms
used to sort the results and the search process, respectively. Section 9 represent the
empirical experiments that were conducted to evaluate the search engine. Section 10
describes the related work, Section 11 explains the threats to validity of this work
and Section 12 summarizes the contributions of this paper and discusses future work.

2. Overview of Approach

The architecture of our search engine and its components are depicted in Figure
2. The first component is an ultra-large-scale source code repository which contains
over 116,609 open-source projects extracted from various online software repositories.
The second component is our novel source code indexing technique, which represent
projects and their source files in a form of index which is efficient for performing
information retrieval techniques. The third component is a tactic detector [20, 24]
which is capable of detecting various architectural tactics in the indexed code arti-
facts. The tactic detector relies on information retrieval techniques, and its accuracy
was previously validated in a series of experiments [20, 24].

The fourth component is a dependency analyzer which generates a dependency
matrix for each tactical file in the source code of a project. This matrix is then
used by the fifth component - Matching Technical Problem - to find whether the
implementation of a given tactic is related to a technical problem/context or not.
Technical context refers to a framework, technology, programming language, or APIs
which can be used to implement the tactic or technical problem in which the tactic
needs to be implemented.

The final component is a novel Ranking algorithm. It ranks the source files in
the search results based on (i) the semantic similarity of a source file to a searched
tactic (ii) the semantic similarity of a source file and its direct dependent files to a
technical problem represented in the search query.

1http://design.se.rit.edu/ArchEngine/
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Figure 2: The architecture of our search engine

The search process is initiated when a user provides a preliminary description
of the tactic implementation problem represented in the form of a query. Exam-
ples of such inquiries are provided in Figure 1. This description is used to initiate
the search query composing of desired tactic and technical context in which the tac-
tic should be implemented. The user is asked to separate the tactic and technical
problem. For instance, when a developer is searching for “sample implementations
of Heartbeat tactic when it is used in a multi-threaded program to monitor HTTP
type processes”, the query will have the following two pieces, (Tactic, Heartbeat)
and (Technical Problem, Multi-threaded HTTP process). ArchEngine breaks this
query into two pieces of tactic-and-problem so it can retrieve the cluster of files
implementing the tactic first. Then, it filters these files based on how similar each
cluster of tactical files is to the requested technical problem. A tactic-similarity score
and context-similarity score will be calculated for each file (described in section 7).
Subsequently, the ranking algorithm order the results based on these two metrics.
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3. Creating Ultra-Large Scale Repository of Open Source Projects

The first component is a large scale repository of software projects extracted
from online open-source repositories. The current version of our repository contains
116,609 projects extracted from GitHub, Google Code, SourceForge, Apache, and
other software repositories. We have developed different code crawling applications
to retrieve projects from all these code repositories. To extract the projects from
GitHub, we make use of a torrent system known as GHTorrent2 that acts as a
service to extract data and events and gives it back to the community in the form of
MongoDB data dumps. The dumps are composed of metadata about projects such
as users, comments on commits, programming languages, pull requests, follower-
following relations, and others.

We also used Sourcerer [29], an automated crawling, parsing, and fingerprinting
application developed by researchers at the University of California, Irvine. Sourcerer
has been used to extract projects from publicly available open source repositories such
as Apache, Java.net, Google Code and Sourceforge. Its repository contains versioned
source code across multiple releases, documentations (if available), project metadata,
and a coarse-grained structural analysis of each project. We downloaded the entire
repository of open source systems from these code repositories.

Table 1: Overview of the projects in ArchEngine’s Source Code Repository
Language Freq. Language Freq. Language Freq.

Java 32191 Matlab 354 Scheme 80
JavaScript 22321 Arduino 321 Prolog 77

Python 9960 Emacs Lisp 321 F# 74
Ruby 8723 Rust 308 D 72
PHP 8425 Puppet 286 Pascal 60
C++ 5271 Groovy 253 FORTRAN 45

C 4592 SuperCollider 185 Racket 44
C# 4230 Erlang 154 VHDL 43

Objective-C 2616 Visual Basic 134 Verilog 43
Go 1614 ActionScript 120 Bison 39

CoffeeScript 1187 OCaml 105 Cuda 37
Scala 729 Assembly 98 Objective-C++ 33
Perl 699 ASP 85 SQF 26
Lua 458 Dart 84 Mathematica 25

Clojure 456 Julia 84 Apex 22
Haskell 456 Elixir 82 PureScript 22

*Total number of projects:116,609, *Total number of source files: 23M

After having extracted all these projects from GitHub and other repositories, we
performed a data cleaning in which we removed all the empty or very small projects

2http://ghtorrent.org/
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(i.e. projects that have less than 20 source files). Table 1 shows the frequency of all
the projects in different programming languages in our repository as well as its size
in terms of number of projects and source code files.

4. Source Code Indexing

ArchEngine uses text-mining techniques to identify and retrieve tactical code
snippets. This requires efficient indexing of terms across all the source files in our ul-
tra large scale repository. The second component of ArchEngine is a term-document
indexing module, which indexes the occurrence of terms across source files of each
project in our code repository. This component, which is called Indexing, first pre-
processes each source file in which it uses: (i) a stemmer to reduce words to their
root forms, the stemming task was performed using Porter’s Stemming Algorithm
[30], (ii) a stopper to remove common terms, (iii) a splitter that splits variable names
based on the common coding conventions. After these preprocessing the source files
are indexed.

The index stores statistics about each documents (source files) such as term fre-
quency (TF), document frequency (DF), TF/IDF and location of source file in order
to make term-based search more efficient. This is an inverted index which can list
the source files that contain a specific term [14]. Furthermore, the index also stores
the metadata (language, project etc.) for each source file.

The indexing process is the core function of ArchEngine, that is used during
identification of tactic and indexing tactical files, searching, and other associated
tasks such as highlighting, querying, language analysis, and so forth. All the files
that were retrieved from the earlier step are given as inputs to the indexing system.

5. Detecting Architectural Tactics

To identify which source codes from our repository are architecturally-relevant
(i.e. implements an architectural tactic), we use the tactic detection algorithm de-
veloped previously [25]. This technique uses a custom-made supervised machine
learning algorithm trained with manually collected code snippets that implement
an architectural tactic. This detection algorithm encompasses three phases: Data
Preparation Phase, Training Phase and Classification Phase. These phases work as
follows:

• Data Preparation Phase: In this phase, the training set is preprocessed using
standard information retrieval methods. In this preprocessing, the stop words
(i.e. irrelevant words, such as programing language keywords) are removed
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and the identifiers are splitted into their primitive parts. Subsequently, those
splitted identifiers are stemmed in order to find their root forms. Lastly, the
source codes are broken down into a list of terms which are used in the next
phase.

• Training Phase: As the name suggests, in this phase the classifier mechanism is
trained with the list of terms extracted in the previous phase from the manually
established dataset of code snippets that implement a tactic. From this training
data, the training mechanism obtains a list of indicator terms, i. e., terms
that are a representative for the tactic. Also, a weight value is given to each
indicator term. This weight value shows the level of importance of an indicator
term with respect to the tactic. For example, the term ”role” is one of the
most used terms when implementing the ”Role-Based Access Control”, so it
receives a higher weight value.

A formal definition is given as follows: let q be a tactic of interest (e.g. Heart-
beat). The indicator terms of the tactic q are mined by considering the set
Sq of all classes within the training set that are related to the tactic q. The
cardinality of Sq is defined as Nq. Each term t is assigned a weight score Prq(t)
that corresponds to the probability that a particular term t identifies a class
associated with tactic q. The frequency freq(cq, t) of the term t in the class
description c related with the tactic q, is computed for each tactic description
in Sq. Then, the Prq(t) is computed as:

Prq(t) =
1

Nq

∑
cq∈Sq

freq(cq, t)

|cq|
∗ Nq(t)

N(t)
∗ NPq(t)

NPq

(1)

• Classification Phase: In this phase, the indicator terms of an architectural
tactic (calculated in the Training Phase using the Equation 1) are used to
calculate the probability score (Prq(c)) which indicates the likelihood that a
given source code c is associated with the tactic q. Let Iq the set of indicator
terms for the tactic q identified during the training phase. The classification
score that class c is associated with tactic q is then defined as follows:

Prq(c) =

∑
t∈c∩Iq Prq(t)∑
t∈Iq Prq(t)

(2)

where the numerator is computed as the sum of the term weights of all type q
indicator terms that are contained in c, and the denominator is the sum of the
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term weights for all type q indicator terms. The probabilistic classifier for a
given type q will assign a higher score Prq(c) to a source code c that contains
several strong indicator terms for q. Source codes are considered to be related
to a given tactic q if the classification score is higher than a selected threshold.

The threshold value is established through the 10-fold cross-validation pro-
cess [4], a standard approach commonly used in software engineering research
to evaluate accuracy and generalizability of data mining techniques. In this
process, there are ten groups in which each of them contains one architectural-
related code snippet and four unrelated ones. The system repeatedly is trained
with nine of these groups and the remaining one is the testing set (i.e. it has
the five source codes classified into architectural-related or unrelated). This
execution is repeated until all groups are used as testing sets for a variety
of threshold values. Since we know from the testing set which files are relat-
ed/unrelated to an architectural tactic, we can verify which threshold value has
a better performance in the detection accuracy of architectural tactics. The
accuracy of tactic detection has been previously evaluated in a number of ex-
tensive studies [24, 20]. Currently our approach is able to accurately detect over
10 architectural tactics such as heartbeat, scheduling, resource pooling, authen-
tication, authorization, secure session management, ping-echo, checkpointing
and audit trail, Role-based access control (RBAC) [24, 23, 22, 20].

6. Matching Technical Problem

Until previous step, ArchEngine was able to detect tactical files across our ultra
large scale repository, In the next two steps, it will calculate a score for the technical-
context in which the tactic is implemented. This would help us not only identify the
tactical file but also separate tactic instances which are implemented using technolo-
gies or deal with the technical problems stated in the developers’ query.

The technical context can be discovered from the areas of the code where a tactic
is adopted. To discover the technical-context, ArchEngine uses the latent-topics
within the tactical file itself and neighboring files which use or provide utilities for
the tactical file. This is done because the technical context is not fully presented in
the tactical file itself and is reflected in the surrounding files. For example, in case of
the Authentication tactic, the files which use the authentication function describe the
technical context rather than the files which implement the authentication. There
might be cases the technical-context can be observed in both tactical file and the
neighboring files which have direct method call with the tactical file. Therefore,
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ArchEngine needs to identify the technical context for the tactic by looking at the
files which interact with the tactical file.

Therefore, the Structural Analysis component is used to find the source files
which have direct method call with the tactical files. This component is responsible
for statically analyzing all projects in ArchEngine’s repository and generating a call
graph represented in the form of dependency matrix for each tactical file.

The dependency matrices extracted for each tactics are used by the next com-
ponent - Matching Technical Problem - which implements a paralleled version of
Vector Space Model (VSM) [27] to calculate a score for the relevance of the tactic’s
technical-context and what is stated in the developer’s query. The developer’s query
is broken into two parts: the tactic under search and the technical context. The sec-
ond part of the query is used by this component to calculate a score for the tactic’s
technical context.

This component is capable running over 22 million source files in a few seconds.
Vector Space Model (VSM), is a standard approach typically used by search engines
to rank matching documents based on their relevance to a given search query.

In the VSM, the developer’s query (technical problem part) q and each source
file f is represented as a vector of terms T = t1, t2, ...., tn defined as the set of all
terms in the set of queries. Therefore, a source file f is represented as a vector
~f = (w1,f , w2,f , ..., wn,f ), where wi,f represents the weight of the term i for source
file f . A query is similarly represented as ~q = (w1,q, w2,q, ...., wn,q). The standard
weighting scheme known as tf − idf is used to assign weights to individual terms
[27], where tf represents the term frequency, and idf the inverse document frequency.
Term frequency is computed for source file f as tf(ti, f) = (freq(ti, f))/(|f |), where
freq(ti, f) is the frequency of the term in the document, and |f | is the length of the
document. Inverse document frequency idf , is typically computed as:

idfti = log2(n/ni) (3)

where n is the total number of source files in the tactic collection, and ni is the
number of source files in which term ti occurs. The individual term weight for term
i in source file f is then computed as wid = tf(ti, f) × idfti. A similarity score
ContextSim(f, q) between source file f and technical query q is computed as the
cosine of the angle between the two vectors as

ContextSim(f, q) =
(
∑n

i=1 wi,fwi,q)(√∑n
i=1 wi,f ·

√∑n
i=1 wi,q

) (4)

The similarity score between the technical part of the query and the topics in
tactical file and its neighboring files is used as a score for relevance of the technical
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context. This score is used to identify the source files which are relevant to the
technology used alongside with the tactic.

In the next section we present a formula for ranking the results based on the
tactic and technical scores.

7. Ranking Algorithm

In order to rank the results of our search engine, a custom ranking algorithm
has been developed. There are three components that compute different scores in
the ArchEngine’s ranking mechanism presented in formula 5: (i) a component that
computes a tactical score for a given file, reflecting the probability that a source file
implements a tactic (TScore(f, t), calculated using formula 2, where f is a source file
and t is a tactic,), (ii) a component that computes a score called ContextSim(f, q) for
the similarity of q, a technical problem queried by the user and content of the tactical
file, f . This score is calculated based on word occurrences and cosine similarity
formula described in equation 4. Lastly (iii) a component that computes an average
technical similarity score for all the files interacting the tactical file (nbr: all the
neighboring files for f). This last component provides a score for the context in
which the tactic has been adopted. This is particularly important since in some
tactics, the frameworks, or technology used by the developers are not implemented
in the same files. Developers sometimes separate the tactical functions and the
contextual concepts where the tactic is implemented with.

The total ranking score is the weighted sum of these components. Each com-
ponent produces results from different perspectives (i.e., tactical matches, direct
technological matches, indirect technological matches). Our goal is to produce a
unified ranking by putting these orthogonal, yet complementary, rankings together
in a single score. To do so, we compute the rank of a result for a given tactic and
search query as follows:

rank(f, t, q) =TScore(f, t) + ContextSim(f, q) +

∑
d∈nbr(f) ContextSim(d, q)

nbr(f)
(5)

8. Search Process

A developer initiates the search process by first selecting the desired tactic then
specifying the problem where the tactic is used to address or the technology or frame-
work which is used to implement the tactic. Separating these two pieces will help
ArchEngine to better identify the context in which the tactic is implemented and
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return the results which match the described in the query. Examples of such queries
are:

Query#1: Heartbeat implementation over UDP socket programming

Query#2: Secure session management using HttpSession of Java

Query#3: Thread pooling multi-thread implementation executor

service of java

9. Evaluation and Comparison with State-of-the-Art

A set of experiments were conducted to compare the performance of ArchEngine
against other generic code search engines. For this purpose, we evaluated ArchEngine
against Open Hub 3 (which used to be known as Koders), Krugle 4, SourceForge 5

and the built-in search in GitHub repository 6. These Web systems were chosen as
representative samples of code search engines used periodically by developers when
performing their coding activities.

We believe ArchEngine like many other code search engines is useful for junior
developers and those with less programming experience. Senior developers, who
are familiar with architectural tactics and technologies, are less likely to search for
sample code snippets to get implementation ideas. Therefore, in order to evaluate
the practicality of ArchEngine, we recruited graduate students as subjects who are
familiar with architectural concepts but do not necessary have extensive experience
as architect or software developer.

Any code search engine needs to be evaluated regarding the accuracy of the items
in the results as well as their ranking. In the next subsections, we detail each step
performed to execute this experiment, the metrics that were collected for assessing
the performance of the tools and the results we obtained.

9.1. Methodology

In this experiment, there was a total of 21 subjects enrolled in a graduate Software
Architecture course. They were asked to complete three architecture prototyping
tasks. The subjects were required to implement a minimal functional system and
satisfy a quality requirement (availability, security or performance) through the usage
of specific architectural tactics. The tactics under consideration were: Heartbeat,

3https://code.openhub.net/
4http://opensearch.krugle.org/
5http://sourceforge.net/
6https://github.com/search/
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Secure Session Management and Thread Pooling. A detailed discussion about these
tactics is presented in [3]. Although the current version of our search engine supports
10 architectural tactics [20], for the sake of evaluating the ArchiEngine’s proof of
concepts, we randomely selected the above 3 tactics out of 10. Comparing multiple
search engines for multiple tactics will be very time consuming, we believe similar
results will be obtained for the other tactics.

The subjects were asked to use ArchEngine and other provided code search en-
gines to find sample source files that they can reuse or get ideas to implement the
three tactics. The search process was performed in pairs. Each pair of subjects
created a set of queries containing a list of keywords to search for architecturally rel-
evant code snippets that could help them complete the assigned tasks. Then, these
queries were applied to all the search engines. Later, each code snippet returned
was analyzed in terms of its correctness. A search result was considered as correct
when it contained an implementation of the architectural tactic within the queried
technical context or frameworks of interest.

9.2. Assigned Architecture-Prototyping Tasks

Table A.2 in the Appendix shows the assigned tasks to the subjects. Each task
includes an architecture-prototyping to implement basic components of a software
system, mock business components with minimum functions but fully implement the
tactic. For each of these task we provided generic considerations and constraints that
partially define how the tactic should be developed (yet, subjects had the flexibility
to select their software type and technologies).

The following three tasks were performed by subjects teams (8 pairs and 4 indi-
viduals).
Task#1: Fault detection using Heartbeat. In the first task, subjects were
asked to develop a dependable system that could detect the failures of a critical
component using the Heartbeat tactic. subjects were required to implement all the
classical elements of heartbeat: (i) a (heartbeat sender) process that emits a periodic
heartbeat message to indicate its availability, (ii) a (heartbeat receiver) which checks
the availability of the sender and lastly (ii) a (heartbeat monitoring) process which
imitates the recovery in case of detecting a failure [21].
Task#2: Resource arbitration & performance enhancement using Pooling.
In the second task, the subjects were asked to develop the Thread Pooling tactic to
improve the performance of a system. The requirement is that the system shall have
resources that are expensive to create, execute and maintain. Thus, the functionality
is broken down into chunks of executable units which are added to the pool of threads.
Task#3: Web-based secure session management. The third task requires
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the development of a Web application with at least two tasks in which can only be
completed by different groups of authenticated and authorized users. To keep track
of authentication and authorization data, subjects needed to implement the secure
session management.

Due to the extensive cost of implementing a system, subjects were asked to (i)
fully implement the tactic, (ii) develop the functional features as needed, (iii) imple-
ment mock-components for the remaining domain components and features.

These subjects were advised to perform the assigned tasks either in pairs or
alone. Furthermore, they could develop a tactic from scratch or choose an existing
framework to implement it. They had the flexibility of working in any application
domain. We considered that such freedom of choice would allow our search engine
to be tested against a variety of scenarios, thereby avoiding biases due to underlying
technologies and software domains. The search engines introduced in previous sub-
section were used by the subjects to find sample code snippets for their architecture-
prototyping tasks.

9.3. Hypothesis

In this experiment, we aim to evaluate the following hypothesis:

Hypothesis: ArchEngine users find more relevant architectural code snippets
compared to the users of Open Hub, Krugle, SourceForge and the GitHub search.

Manually evaluating all the search results is not feasible because it requires a lot
of time to be completed. In the context of Web search, individuals are unlikely to
go deeper in the results of a search [12]. Therefore, we asked the subjects to analyze
only the ten topmost results with respect to their correctness, i. e., if the returned
code snippet implements the tactic using the technology under consideration.

The metrics described in the next section are used to verify whether there is a
statistically significant difference between ArchEngine and existing search engines.

9.4. Evaluation Metrics

In the context of traditional information retrieval, precision and recall are com-
monly used for evaluating the performance of a system. However, for web-scale in-
formation retrieval techniques such as source code search engines, recall is no longer
a meaningful metric, as many queries have thousands of relevant source files, and few
developers will be interested in reading all of them. Instead, Precision at k (P@k) is
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recognized as a useful metric and widely used by researchers (e.g., P@10 or “Preci-
sion at 10” corresponds to the number of relevant results on the first search results
page). In our first experiment we report P@10.

However, reporting precision at K is not enough for evaluating search engines.
This metric fails to take into account the ranking of the results, i.e., whether the
relevant source files are placed in the topmost positions. Therefore, besides using
the P@10 to evaluate the performance of the search engines, we also calculated
the Normalized Discounted Cumulative Gain (NDCG)- a metric which considers not
only the relevance of a returned code snippet but also its order in the result set. These
two metrics, P@10 and NDCG, are computed as follows:

P@k =
|{relevant tactical files} ∩ {top K items in the results}|

k
(6)

Given that we analyze only the first ten results, the value of k is equals to 10
in the equation. This formula shows the accuracy of the search engines, the next
formula is used to examine the power of search engines in ordering the results.

NDCG =
rel1 +

∑n
i=2

reli
log2(i)

NF
(7)

where reli in this equation is a binary function that indicates the correctness of
the result (it is equals to 1 only when the result is correct, otherwise it yields zero).
Given that we analyze only the first ten results, the value of n is equals to 10. The
NF in Eq. 7 is a normalization factor equals to the highest possible value achieved
when all the results are correct (i.e. NF = 1 + 1/log2(2) + 1/log2(3)... + 1/log2(10)
≈ 5.25449).

These two metrics are commonly used together to evaluate the results of web-
based search engines.

9.5. Results

Figure 3 shows our experiment findings after evaluating the top 10 answers re-
turned by our system and other search engines. As previously mentioned, we com-
pared ArchEngine with Koders, Krugle, and GitHub in terms of their P@10 and
the NDCG. For the P@10 metric, we calculated the mean P@10 achieved for all 12
distinct queries evaluated by the subjects for a given tactic. For NDCG, we use a
Box plot to verify how the NDCG metric is distributed for each tactic. As shown in
this figure, in all the three tasks assigned to the subjects in the Software Architecture
class, the results of ArchEngine outperformed other search engines.
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(a) NDCG results for Heartbeat (b) NDCG results for Sec. Session Mngmt.

(c) NDCG results for Thread Pooling (d) P@10 for all the search engines

Figure 3: Comparison of ArchEngine’s performance with state-of-the-art code search engines

Regarding the P@10, we can see that ArchEngine achieved a value of 0.63, 0.8 and
0.72 for Heartbeat, Secure Session Management and Thread Pooling, respectively.
These three values outperformed the other search engines, being at least 15% higher
than the other code search engines. Specifically, Thread Pooling had an outstanding
performance with its P@10 43%, 49% and 59% higher than Koders, Krugle and
GitHub, respectively.

ArchEngine was also able to achieve a better search ranking, having the correct
links mostly apearing on top of the list. Figures 3(a), 3(b) and 3(c) depicts the
box plots for all the three tactics. NDCG value for ArchEngine was less dispersed,
which means that ArchEngine had a consistently good performance for the evaluated
tactics. Moreover, ArchEngine had higher NDCG values in most of its query results.
In the case of Heartbeat, even though the median is almost the same for ArchEngine
and Koders, yet we can see that the Koders’ results are more dispersed. Koders’
box plot is taller than ArchEngine’s ranging from 0.15 to 0.69, whereas most of
ArchEngine’s results falls into the range of 0.4 to 0.8. The results of this experiment
provide a positive answer to our research hypothesis, and clearly shows the feasibility
and accuracy of our search engine in extracting and returning tactic related code for
a given technical problem.
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10. Related Work

Over the years, several code search engines have been made to support different
code search needs. Usually, these systems maintain a cached archive of source code
and/or metadata about these artifacts and use a set of heuristics to define the rel-
evance of an artifact which is subsequently used in their ranking algorithm. They
differ on various aspects such as types of input supported (e.g. free text [1, 16], search
queries inferred from source code [9, 31], etc), granularity level of produced output
(such as functions [16], source files [1], code fragments [6, 10, 11], components [9, 31],
etc), releasing approach (as a Web site [10, 15, 16], an Eclipse plugin [1, 2, 9, 11],
etc), underlying code search technology and so on.

In this context, Prospector [11] and Sniff [6] are tools for obtaining code snippets
in Java, i.e., fragments of a source file which perform a specific task. On one hand,
Prospector is released as an Eclipse plugin, so it creates search queries on-the-fly from
the code being developed in the Eclipse editor and outputs a set of recommended
code snippets for developers to reuse [11] . On the other hand, Sniff gets free text as
inputs and return code fragments based on merged data from API documentations
and publicly available Java code [6]. Similarly to Prospector and Sniff, Kim et al [10]
presents a code search engine which outputs Java API documentations along with
sample code snippets that uses those APIs.

McMillan et al. proposed Portfolio for finding functions written in C/C++ and
allowing users to navigate among these functions based on their call dependency
[16, 19]. Its ranking approach adapts the PageRank algorithm to match functions
based on the terms within the function itself and in the invoked functions and ranking
then based on the frequency of usage (i.e. how many times a function is called). In
spite of Portfolio has been proved to better meet the developer’s needs for finding
reusable code snippets, their focus is way too low-level (at the function level) and it
only returns C/C++ code.

Sourcerer [1, 2] is a code search engine for retrieving reusable open-source code.
For fetching and ranking the results, it verifies structural properties, dependencies
and entities within the source code files. Such structural analysis represents an
improvement over a keyword-based matching of source files. Similarly to ArchEngine,
it crawls public source code available in the Web, stores those files in a local code
repository and extracts, for each file, a list of keywords storing them in an index.
However, differently from ArchEngine, it is limited for files written in Java and does
not use any heuristics for extracting the best code snippets for any architectural
tactic and technical problem.

For fulfilling the need of finding reusable higher-level artifacts, Code Conjurer [9]
and Codebroker [31] are search engines for finding reusable components developed in
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Java. Both of them do not require that developers explicitly provide search queries to
their engine, instead they perform the search based on parsed information from source
code being written by developers. The difference is that Code Conjurer generate
search queries from test cases whereas Codebroker analyses the comments in the
code written by programmers. Another tool for higher-level searches is Exemplar
[15] which focus on finding executable Java software projects for reuse. Unlikely
ArchEngine, they only return Java components/projects and do not support any
heuristic for optimizing results to address the demand for finding sample code for
architectural tactics.

Besides these code search engines proposed and developed by the research com-
munity, there are also proprietary engines for retrieving specifically source code. Ex-
amples of such engines are Koders (now named as Open Hub Code Search), Krugle
and so forth. In addition, some public repositories (e.g. GitHub and SourceForge)
support the search of code snippets and/or software projects.

There are many differences when we compare ArchEngine with the search engines
discussed previously. First, the techniques used in ArchEngine are mainly focused
on finding source code related to architectural tactics while traditional code search
engines usually do full-text search on the source code documents and their capabil-
ity to perform architectural tactics searches is limited or inexistent. Second, they
output code in a specific programming language (e.g Java) and focus on retrieving
lower-level results (such as functions and code fragments). Even if the search engine
outputs higher-level artifacts (i.e. components or projects), yet their search heuris-
tics does not emphasize finding artifacts that satisfy quality requirements through
implementing architectural tactics.

11. Threats to Validity

In this section we discuss the major threats to the validity of our work as well as
the ways we attempted to mitigate them. These threats are classified into internal
and external validity. On one hand, the internal validity refers to what extent a
research study reduced systematic errors and biases in order to draw conclusions
about cause-and-effect relationships from the data collected. On the other hand, the
external validity is concerned about generalizablity of our work.

11.1. Internal Validity

Regarding our experiment design to evaluate ArchEngine, the main threat comes
to the participants’ perception on judging the correctness of a search result. To
evaluate the correctness attribute of a search result, the individual should have a
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solid knowledge on the purpose of the tactic and have an overall understanding on
how these tactics are implemented in the source code. Thus, if an individual does not
have a full understanding on architectural tactics as well as how to develop it using
a given programming language and/or framework, then it can lead to biased results.
We mitigate this threat by using students that were enrolled in a graduate Software
Architecture course which were previously taught about these architectural tactics
with class diagrams and real examples on how to apply those tactics in real systems.
Moreover, since they were allowed to use any programming language and underlying
frameworks/APIs, this gave freedom to the students to choose the technologies they
were most comfortable with, so reducing the risk of wrong analysis due to lack of
technical background.

Another threat is related to the accuracy of tactic detection algorithm. Since
this approach relies on data mining techniques, it suffers from the common accuracy
problems of automated text mining approaches. The precision of ArchEngine de-
pends on the quality of detected tactics. Our previous extensive experiments indicate
that the tactic detection achieves a precision of 70% and higher for 10 architectural
tactics[20, 23, 24]. Furthermore, it is possible to tune the classification threshold
of this technique to only return the source files with high confidence, increasing
precision while reducing recall.

11.2. External Validity

The main threat to the external validity of this work is that our search engine
was evaluated for three architectural tactics mostly implemented with the follow-
ing technologies: C#/ASP.net, Java, PHP and Python. However, since the results
demonstrated a good performance for these subset of technologies that were randomly
chosen by students, it gives us confidence that the results would not be significantly
different if the same experiments were performed for other programming languages
and frameworks.

Another threat to our work is that, despite we have already downloaded over
116,609 of projects, yet our local repository is smaller than existing ones. For ex-
ample, SourceForge claims to host about 430,000 projects. However, our repository
is continuously being increased through downloading and indexing the source codes
from public source code repositories available on the Web. Thus, despite the relative
small size of our repository, it is increasing over time and yet, we were still able to
get satisfactory results.
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12. Conclusion

We created an approach called ArchEngine for finding highly relevant source files
that implement an architectural tactic within given technical context. ArchEngine
uses an extensively large code base repository. In ArchEngine, we combined various
data mining, information retrieval, and indexing techniques with a light weight source
code analysis approach to retrieve tactical files adopted within a specific technical
context or developed using a particular technology. Furthermore, we developed a
novel ranking algorithm to sort the search results. We evaluated ArchEngine with 21
junior programmers and found with strong statistical significance that it performed
better than Koders (Open Hub), Krugle, and the built-in search in GitHub repository.
ArchEngine performed better in both precision at 10 and Normalized Discounted
Cumulative Gain (NDCG).
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Appendix B. ArchEngine Demo

Figure B.4: Developer prompt Tactic,Language, and Technical problem to the ArchEngine
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Figure B.5: A snapshot from the search result for query in figure B.4

Figure B.6: The developer click on full code button for on of the code snippets in figure B.5
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