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Abstract—Large Language Models (LLMs) are gaining popular-
ity among software engineers. A crucial aspect of developing
effective code generation LLMs is to evaluate these models using
a robust benchmark. Evaluation benchmarks with quality issues
can provide a false sense of performance. In this work, we
conduct the first-of-its-kind study of the quality of prompts
within benchmarks used to compare the performance of different
code generation models. To conduct this study, we analyzed
3,566 prompts from 9 code generation benchmarks to identify
quality issues in them. We also investigated whether fixing the
identified quality issues in the benchmarks’ prompts affects a
model’s performance. We also studied memorization issues of
the evaluation dataset, which can put into question a bench-
mark’s trustworthiness. We found that code generation evaluation
benchmarks mainly focused on Python and coding exercises and
had very limited contextual dependencies to challenge the model.
These datasets and the developers’ prompts suffer from quality
issues like spelling and grammatical errors, unclear sentences to
express developers’ intent, and not using proper documentation
style. Fixing all these issues in the benchmarks can lead to a better
performance for Python code generation, but not a significant
improvement was observed for Java code generation. We also
found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may
have data contamination issues.

Index Terms—benchmarks, code generation, data quality, data
contamination

I. Introduction

Code generation models generate code by taking as input a
prompt, which captures the developers’ intent [1]. These mod-
els are increasingly popular among software developers [2]. In
fact, a recent survey with 500 US-based developers who work
for large-sized companies showed that 92% of them are using
AI-based code generation tools both for work and personal
use [3]. Part of this fast widespread adoption is due to the
increased productivity perceived by developers [4]; AI helps
them to automate repetitive tasks so that they can focus on
higher-level challenging tasks [5].

As code generation models are becoming ubiquitous during
software development [6], the need for reliable evaluation
benchmarks is vital. Code generation benchmarks are crucial
for evaluating and comparing the effectiveness of various
models in producing code. These benchmarks are designed
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to assess the generated codes from various perspectives, such
as their correctness, readability, and security [7].

While there are over 15 evaluation benchmarks for code
generation models [7], their quality and reliability are currently
unclear. First, these benchmarks are often collected in an ad-
hoc fashion, which may not be representative of real software
scenarios [8]. Second, as these benchmarks are curated from
publicly available data, there is the risk that existing mod-
els include data from these benchmarks in the training set
(i.e., test set contamination [9]). In this case, the reliability
of pass@k [10] and other performance metrics is put into
question, as the models might have memorized the solutions
to the prompts in the dataset [11]. Therefore, issues on these
benchmarks significantly impact the trustworthiness of the
evaluation results, making it crucial to thoroughly investigate
and evaluate the benchmarks themselves.

In light of this research gap, we present an empirical study of
the quality of prompts in benchmarks from multiple dimen-
sions and compare them with issues observed in real world
prompts created by developers. Specifically, we systematically
analyzed 3,566 prompts from 9 Java and Python benchmarks
to check the quality issues in these prompts. We observed
that issues fall into three categories: formatting, a prompt
containing sentences that do not properly (or incorrectly)
specify the behavior of the code, and prompts containing
unnecessary tokens (noise). Besides identify quality issues in
the benchmarks’ prompts, we also explored to what extent
these issues affect a model’s performance. In doing so, we
found that fixing spelling and grammatical issues and using
standard JavaDoc and docstring style can help models to
generate code. Last, but not least, we studied whether existing
models are memorizing answers from existing benchmarks
(i.e., test set contamination [11], [12]). In our experiments,
we found empirical evidence of testset contamination in two
models: CodeGen-2.5 and GPT-3.5.

The contributions of this paper are:

– A thorough investigation of code generation benchmarks’
prompts (RQ1 and RQ2) so researchers and developers can



make informed decisions about choosing a benchmark to
evaluate code generation models.

– A study of how fixing quality issues in a prompt can affect
a model’s evaluation (RQ3).

– An investigation of possible test-set contamination issues in
HumanEval, a popular benchmark (RQ4).

– A comparison of the quality issues observed in benchmarks’
prompts and the real world prompts made by developers
when interacting with ChatGPT [13] (RQ5).

This paper’s replication package is available in https://github.
com/s2e-lab/Datasets-Quality.

II. Background
A. Large Language Models
Large Language Models (LLMs) [14] are neural networks with
tens of millions to billions of parameters that were trained on
large amounts of unlabeled text using self-supervised or semi-
supervised learning [15]. LLMs are intended to be general
purpose models for many natural language processing tasks,
such as text generation, translation, summarization, etc. While
LLMs are trained to understand natural language, they can be
fine-tuned with source code samples to understand program-
ming languages. This makes LLMs useful for a myriad of
software engineering tasks, such as code completion [16]–[19],
and summarization [20]. CodeBERT [19], CodeT5 [21], and
Codex [10] are examples of “code LLMs”, i.e., LLMs trained
on source code (henceforth, simply “LLMs”).

Given a prompt as input, a code LLM generates code tokens,
one by one, until it reaches a stop sequence (i.e., a pre-
configured token sequence) or the maximum number of tokens
is reached. A prompt provides a high-level specification of
a developer’s intent and can include different code elements,
e.g., function signatures, expressions, comments, etc.

Transformer-based code generation models employ masked
language modeling objectives or left-to-right (causal) autore-
gressive language modeling objectives [10], [15]. That is, to
generate code, the generative model will use the context on
the left side of the cursor and ignore any context on the right.
The process of creating code that incorporates context from
both sides is known as code infilling. In this work, we focus
on studying left-to-right code generation benchmarks because
the majority of benchmarks are meant to evaluate left-to-right
code generation [7]. For instant, we considered 9 benchmarks
in our study out of 17 benchmark studied in this survey by
Daoguang et al. [7].

B. Code Generation Benchmarks
Code generation benchmarks are used to evaluate and com-
pare models based on different metrics [10], [22]. Existing
benchmarks usually contain coding problems captured in a
natural language, comment, or combination of comment and
code, referred to as a prompt [1]. After using the prompt for
code generation, different metrics can be used to evaluate the
performance. For example, CodeBleu [23] can be used for

syntactical correctness, and pass@k [10] can be used for func-
tional correctness. Benchmarks may be created for a specific
purpose. For example, SALLM [24] focuses on evaluating the
security of generated code and uses the vulnerable@k to
compare the performance of the models.

C. Memorization in LLMs
Memorization refers to a model’s ability to preserve and
generate an identical string from its training data [9], [25].
In this work, we used a similar definition as the one presented
by Carlini et al. [25]. Specifically, if there exists a prompt
that generates a code snippet that completely matches any
of its training data code snippets, then this code snippet is
considered to be memorized by the code generation model, a
case of verbatim memorization [26].

In light of this definition and similar to prior work [27], we
study whether test set contamination by verifying whether the
generated code is a clone of the solution available in the
benchmark. Specifically, in our work, we search for type-1,
type-2, and type-3 code clones to pinpoint memorization [28].
A type 1 clone occurs when two code snippets have identical
code fragments except for layout, comments, and whitespace
differences. A type 2 clone arises when there are syntactically
identical fragments except for comments, whitespace, literals,
identifiers, and types. A type 3 clone means that there are
copied fragments that have undergone additional changes, such
as additions, deletions, or changes to statements, as well as
adjustments to identifiers, literals, types, whitespace, layout,
and comments.

III. Methodology

In this paper, we answer the following questions:

RQ1 How representative are existing benchmarks of real-
world code generation usage scenarios?

Code generation models need rigorous evaluation and verifi-
cation. However, existing benchmarks may not represent real-
world scenarios and cover many programming languages. In
this question, we compare the code generation benchmarks’
covered programming languages, usage scenario(s), number
of prompts, and contextual dependency complexity.

RQ2 What are the quality issues in the prompts within code
generation benchmarks?

In this RQ, we study quality issues in the prompts of code
generation benchmarks. To do so, we manually analyzed a total
of 3,566 from 9 code generation benchmarks. We performed
open coding [29] of the prompts in these benchmarks to
identify and categorize quality issues.

RQ3 Does improving the quality of a prompt in code
generation benchmarks affect the evaluation result?

We investigate whether improving the quality of a benchmark’s
prompts affects the results of code generation models. To do
so, we fixed quality issues identified in RQ2 and compared the
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performance of LLMs when given as input the fixed prompts
and the original prompts with quality issues.

RQ4 Are there contamination issues in existing code gener-
ation benchmarks?

Since code generation models are fine-tuned on source code
from open-source repositories, there is a risk that code from
evaluation benchmarks are in the models’ training set. If
prompts from benchmarks are in the training set, the code
generation model can perform better because it has memorized
the answer [11]. Hence, this contamination issue will affect the
code generation model’s benchmarking process. In this RQ, we
explore the possibility of contamination issues in existing code
generation benchmarks.

RQ5 Are the quality issues in the benchmarks’ prompts
similar to issues observed in real world prompts?

In this RQ, we explore whether the quality issues in the bench-
marks’ prompts are similar to the ones that are observed in
the real world, i.e., from developers using LLMs in their day-
to-day development activities. To answer this question, we ex-
tracted prompts from DevGPT [30], a dataset that contains the
chats from software developers interacting with ChatGPT [13].
This dataset was curated by finding ChatGPT share links
that were posted on GitHub issues, pull requests, discussions,
commits, code files, and threads on Hacker News.

We detail how we answer each RQ in the next sections.

A. RQ1: Code Generation Benchmarks Comparison

To answer RQ1, we first collected 17 benchmarks listed in
a recent survey [7]. Since we focus on left-to-right code
generation, we disregard benchmarks designed to evaluate
code-infilling models. This way, we obtained a total of 9
benchmarks: MXEVAL [22], CoderEval [31], ODEX [32],
MBPP [33], TorchDataEval [34], HumanEval [10], Pan-
dasEval [35], NumpyEval [35], and JigsawDataset [36].
MXEVAL [22] is a benchmark that extends the MathQA [37],
MBPP [33], and HumanEval [10] benchmarks.

To verify a benchmark’s potential of representing real-world
code generation scenarios, we analyzed each benchmark to
identify their (i) covered programming language(s), (ii) us-
age scenarios, (iii) number of prompts, and (iv) contextual
dependency complexity. We classify a benchmark’s contextual
dependency complexity based on the categorization scheme
described by Yu et al. [8]. This complexity can be:

- self-contained: benchmarks whose solution to the prompt
can be implemented using only built-in classes/modules that
do not need to be imported (e.g., Java’s String class does
not need to be imported to be used).

- slib-runnable: benchmarks where the solution to the
prompts needs to import classes/modules that are provided
by the language and do not require further installation (e.g.,
Java’s java.util package and Python’s re module).

- plib-runnable: benchmarks in which the prompts’ solutions
only use libraries that are publicly available on PyPi or
Maven central (e.g., Apache Log4j).

- class-runnable: benchmarks in which the solution uses code
elements (e.g., methods, objects) that are declared outside
the prompt’s method but within the prompt’s class.

- file-runnable: benchmarks in which the generated solution
uses code elements outside its class, but that is still declared
on the same file as the prompt.

- project-runnable: benchmarks in which the generated code
uses code elements declared in other source files in the
benchmark.

To answer RQ1, we created a benchmark profile identifying
the information above for each benchmark. This benchmark
profile was created by examining the benchmarks’ original
paper and technical documentation to identify the metadata
(i)–(iv) listed above.

B. RQ2: Benchmark Quality Evaluation
Since there were over 8,000 prompts in total in the studied
benchmarks, we first randomly sample prompts from each
chosen benchmark with a 99% confidence interval and a 5%
margin of error. As shown in Table I, we analyzed a total of
3,566 prompts from 9 benchmarks.

TABLE I
Total number of prompts and sampled prompts per benchmark.

Benchmark #
Prompts

#Sampled
Prompts

Benchmark #
Prompts

#Sampled
Prompts

MXEVAL [22] 6,031 2,037 MBPP [33] 426 261
MBPP 1,940 791 TorchDataEval [34] 302 270
HumanEval 325 262 HumanEval [10] 164 132
MathQA 3,766 984 PandasEval [35] 101 88

CoderEval [31] 460 342 NumpyEval [35] 101 88
ODEX [32] 439 265 JigsawDataset [36] 88 83

In our study, we focused on Java and Python prompts because
not only these are popular languages among developers [38],
but they are also the most supported language in benchmark
datasets (§ IV-A). Thus, we systematically analyzed the bench-
marks’ Python/Java prompts to identify quality issues. This
qualitative analysis was performed by two of the authors,
with over two years of software development and teaching
experience each. Each author independently performed open
coding [29] of each prompt. The open coding started with a
(initially empty) shared “code book” where we progressively
captured the issue’s title and description with examples as
we analyzed prompts. Our code book was constantly refined
throughout the open coding process.

After each author finished the open coding, a third author,
who has over three years of professional programming ex-
perience, resolved the discrepancies through discussion and
mediation. This analysis took us approximately 650 person-
hours. We calculated the Cohen’s Kappa coefficient to measure



the inter-rater reliability of this analysis, and it was 0.76, which
indicates substantial agreement [39].

C. RQ3: Impact on Performance
In RQ2, we identified the quality issues in the benchmarks’
prompts. In RQ3, we fixed the issues to verify to what extent
fixing them affects the performance of the models. As it would
be time-consuming to manually fix thousands of prompts, we
fixed the issues identified for the Python and Java version
of the HumanEval benchmark [10], [22]. We chose this
benchmark because most of the code generation models are
evaluated with it, as shown in a popular leaderboard published
on PapersWithCode.com [40] which lists over 120 code LLMs
that were evaluated with HumanEval.

To conduct this investigation, the same two authors who have
done the open coding in RQ2 went through all the issues
identified in RQ2 for the 164 prompts from HumanEval
Python [10] and 161 prompts from HumanEval’s Java version
[22]. For each identified issue, we created a set of fix guidelines
that was shared among both researchers. Since a prompt can
have more than one quality issue, the authors first fixed the
issues one by one by creating a modified prompt version that
does not contain one particular type of problem. Subsequently,
they created a new prompt version that fixed all the quality
issues in the prompt. Once both authors fixed all prompts, they
peer-reviewed each other’s fixes and came up with a final fix.
To mitigate subjectivity when fixing issues, the senior author,
who has over 10 years of experience, checked the modification
and updated the prompts in multiple rounds of discussions.
After that, we have 501 prompts for Java and 663 prompts for
Python, including the original prompts.

After fixing these issues, we give the prompts (fixed and
original ones) to five code generation LLMs:

- CodeGen [41] is a code LLM that has three vari-
ants: CodeGen-nl, CodeGen-multi, and CodeGen-mono.
CodeGen-nl, trained with the Pile dataset [42], is focused
on text generation. The CodeGen-multi is built on top of
CodeGen-nl but further trained with a large scale-dataset
of code snippets in six different languages (i.e., C, C++,
Go, Java, JavaScript, and Python) [43]. The CodeGen-mono
is built from CodeGen-multi and further trained with a
dataset of only Python code snippets [41]. They also released
another (newer) version called CodeGen-2.5 [44], which is
trained on the StarCoder data from BigCode [45]. It has a
mono and multi-version. We use CodeGen-2.5-7B-mono
to generate Python code and CodeGen-2.5-7B-multi to
generate Java code.

- SantaCoder [46] is a 1.1B parameter LLM trained on
the Java, JavaScript, and Python subsets of The Stack [45]
dataset. It can do both left-to-right generation and infilling.

- StarCoder [47] is an LLM with 15.5B parameters trained
with over 80 different programming languages. This model
is focused on fill-in-the-middle objectives and can complete
code given a code-based prompt. It has two versions for code

generation: StarCoderBase and StarCoder. As the latter one
is further trained with Python samples, we used that for
Python and the former for Java code generation.

- WizardCoder [48] is an instruct-tuned version of Star-
Coder [47] model using Evol-Instruct method on the code
domain. This model can generate both code and follow
complex instructions.

- The Generative Pre-trained Model (GPT) [15] is a
family of transformer-based [49] and task-agnostic LLMs
that can understand and generate natural language. We used
GPT-3.5-Turbo, which is tuned for chat-style conversation
and powers a popular chat-based question-answering tool,
ChatGPT [13].

We chose these models because they are representative of code
generation LLMs. GPT-3 is used on popular code genera-
tion tools, such as GitHub Copilot [50] and ChatGPT [13].
CodeGen-2.5, SantaCoder, StarCoder, and WizardCoder are
open-source top-performing code LLMs [40], [48].

For each model, we generated 20 codes with a maximum of
t new tokens for each prompt. To choose a suitable value
of maximum numbers of tokens t, we calculated the size of
canonical solutions for the HumanEval’s problems [10]. We
found that the average solution has 54 tokens (maximum of
240 tokens). Hence, we asked each LLM to generate 512 new
tokens (i.e., t is around 10× the average canonical solution’s
length). Then, we calculated the pass@k metric by running the
test cases for each output.
Computing pass@k: Code LLMs are commonly evaluated
using pass@k [10], [51]. This metric estimates the probability
that at least one out of k generated samples is correct (i.e.,
passes all the prompt’s test cases). This metric is computed
by generating n samples per prompt (n ≥ k), counting the
number of samples c that are correct (c ≤ n), and calculating
the unbiased estimator from Kulal et al. [51]:

pass@k = Eprompts

[
1−

(
n−c
k

)(
n
k

) ]
(1)

We set k to 1, 3, and 10 and generated n = 20 outputs for each
prompt. We used temperature 1.0 for GPT-3.5-Turbo [15] for
all pass@k, 0.2 for pass@1 and 0.6 for pass@3 and pass@10 for
CodeGen model [44], and 0.2 for pass@1 and 0.8 for pass@3
and pass@10 for the other open source models. We chose these
temperatures as these were the ones that were reported in the
models’ corresponding papers. In this evaluation, we compared
the models’ pass@k when provided with the original prompt
and its fixed versions.

D. RQ4: Contamination Issues
In this question, we checked the contamination issue of the
widely used HumanEval’s Python version benchmark [10].
We used this benchmark because it is the only one that
has the canonical solution, i.e., it is at a higher risk of the
contamination issue [11]. To answer RQ4, we ran NiCad



TABLE II
Characteristics of the Studied Benchmarks

Name # Prompts Target Code Language Usage Scenario Contextual Dependency
Complexity

CoderEval [31] 460 Python, Java Pragmatic Code Generation self-contained
HumanEval [10] 164 Python Code Exercise slib-runnable
JigsawDataset [36] 87 Python Public Library
MBPP [33] 974 Python Code Exercise self-contained
MXEVAL [22] 16,171 C#, C++, Go, Java, JavaScript, Kotlin, Perl, PHP, Python, Ruby,

Scala, Swift, TypeScript
Code/Math Exercises slib-runnable,

self-contained
MBPP 8,588 All of the 13 languages listed above Code Exercises slib-runnable,

self-contained
HumanEval 1,934 All except C++ Code Exercises slib-runnable
MathQA 5,649 Only Python, Java, and JavaScript Math Exercises slib-runnable,

self-contained
NumpyEval [35] 101 Python Single Public Library plib-runnable
ODEX [32] 945 Python Open Domain self-contained
PandasEval [35] 101 Python Single Public Library plib-runnable
TorchDataEval [34] 50 Python Private Library plib-runnable

(Automated Detection of Near-Miss Intentional Clones), a
state-of-the-art code clone detection tool [52], on all code
generated by each model. NiCad can detect different types of
clones, including Type-1, Type-2, and Type-3 clones.

We first removed all the prompt’s comments (docstring and in-
line) from both the canonical solutions and the generated code.
Then, we used NiCad cross-clone detection mechanism, which
can find clones between two systems. In our case, the first
system is the source codes from canonical solutions, and the
second is the generated codes from the models. We compared
the canonical solutions not only with the generated codes from
the original prompts but also with the generated codes from
the modified prompts that fix all issues in RQ3. As the prompts
were modified by us, they would not be a part of the training
set, though they are similar to the original prompts. Hence,
comparing the results with the original and the modified can
provide us with more insights into the data contamination
issue.

We configured NiCad [52] to find clones in the function labels,
as the HumanEval dataset consists of prompts for completing
functions. For Type-2 and Type-3 clone detection, we kept the
default maximum difference threshold to 30%. We configured
the minimum line number of clones based on the size of the
canonical solution line number. That is, the minimum number
of lines is set to be half of the number of lines in the canonical
solution. It is worth highlighting that since NiCad can detect
clones with at least 5 lines, we kept the threshold set to 5 in
case the canonical solution had less than five lines.

Similar to a prior work [27], we used code clones as a means
to identify cases where the generated code is identical (i.e., a
clone) to the solution. If a code clone is detected, the model
likely has memorized the solution. Hence, to identify potential
contamination issues, we computed the percentage of different
types of clones, including clones from the original and the

modified prompts in the previous research questions. Notably,
the Type-2 clone results from NiCad include Type-1 and Type-
3 clone results include Type-1 and Type-2, and the result is
kept as it is.

E. RQ5: Quality Assessment of Developers’ Prompts
To investigate whether the quality issues observed in bench-
mark datasets (RQ2) are similar to the ones observed in
real prompts, we have collected from the DevGPT dataset
3,995 publicly shared unique ChatGPT conversation links that
are mentioned in code comments, commits, pull requests,
discussions on GitHub, and threads on HackerNews [30]. Next,
we discarded 217 links that were no longer accessible. Then,
we manually inspected each conversation to keep only those in
which developers asked for code and ChatGPT generated one
or more code snippets according to the developers’ prompts.
That is, we discarded conversations in which ChatGPT did
not generate code and/or the generated code was not in Java
or Python. As a result, we had 371 ChatGPT conversation links
that had generated Python/Java code. Two authors (the same
ones from RQ2 & RQ3) did the open coding of these 371
conversations. This open coding process employed the same
methodology as RQ2 (§ III-B). Then, a senior author, who has
more than ten years of experience, resolved any discrepancies.
The Cohen’s Kappa score to measure our inter-rater agreement
was 0.60, which indicates substantial agreement [39].

IV. Results
This section presents the results for each RQ.

A. RQ1: Code Generation Benchmarks Comparison
As shown in Table II, the studied benchmarks have an average
of 516 prompts per language. In terms of supported pro-
gramming languages, we found that all benchmarks included
prompts to generate Python code, and only 2 out of 9 bench-
marks included other languages besides Python. The MXE-
VAL [22] is a benchmark that extends three other benchmarks



TABLE III
Quality Issues in each Benchmark (the percentages are the percent prompts with the issue in the benchmark).

Type Quality Issue # Prompts Benchmark % Benchmark % Benchmark %

Q.I.1: Function/method’s name mismatches
with its intent

1,321
CoderEval 0.6% HumanEval 9.1% MBPP 3.1%
MXEVALHumanEval 8.8% MXEVALMBPP 3.2% MXEVALMathQA 100.0%
NumpyEval 1.1% ODEX 100.0% TorchDataEval 0.4%

Q.I.2: Spelling and grammatical errors 303

CoderEval 8.2% HumanEval 17.4% JigsawDataset 9.6%
MBPP 2.7% MXEVALHumanEval 17.6% MXEVALMBPP 4.7%
MXEVALMathQA 6.7% NumpyEval 10.2% ODEX 4.2%
PandasEval 13.6% TorchDataEval 20.7%

Q.I.3: The prompt description is unclear 124
CoderEval 2.9% HumanEval 1.5% MXEVALHumanEval 0.4%
MXEVALMBPP 6.3% MXEVALMathQA 4.2% NumpyEval 5.7%
ODEX 1.9% PandasEval 3.4% TorchDataEval 2.6%

Q.I.4: Partial or incomplete sentence 132 MXEVALMathQA 13.3% ODEX 0.4%

In
te

nt

Q.I.5: Incorrect input/output pair example 15 HumanEval 1.5% MXEVALHumanEval 1.5% MXEVALMBPP 1.1%

Q.I.6: JavaDoc/docstring has formatting issues 1,835
HumanEval 22.0% MXEVALHumanEval 81.7% MXEVALMBPP 89.5%
MXEVALMathQA 89.2% NumpyEval 1.1% PandasEval 2.3%
TorchDataEval 1.1%

Q.I.7: Not using JavaDoc (Java) or docstring
(Python) on the prompt

439 HumanEval 2.3% MXEVALHumanEval 0.8% NumpyEval 97.7%
PandasEval 94.3% TorchDataEval 98.1%Fo

rm
at

tin
g

Q.I.8: Inconsistent prompt style 311 HumanEval 88.6% MXEVALHumanEval 66.4% MXEVALMBPP 1.4%
NumpyEval 3.4% PandasEval 2.3% TorchDataEval 1.5%

Q.I.9: Interrogation questions in the prompt 152 MXEVALMathQA 0.1% NumpyEval 44.3% ODEX 0.4%
PandasEval 36.4% TorchDataEval 29.3%

N
oi

se

Q.I.10: URL or reference in the comment 18 MBPP 6.1% MXEVALMBPP 0.3%

(MathQA [37], MBPP [33], and HumanEval [10]) to offer
support to other 12 languages besides Python. CoderEval is
a benchmark created by mining Python and Java projects on
GitHub and contains 230 prompts for each language.

The benchmarks did not have a variety of use scenarios; their
prompts were mostly crafted from coding exercises. Among
these benchmarks, CoderEval [8] and ODEX [32] cover
problems from more diverse use cases; they had prompts
that were based on GitHub repositories and StackOverflow
questions which are more similar to real use cases.

In terms of contextual dependency complexity, the benchmarks
were mostly self-contained, slib-runnable, and plib-runnable.
This means the structure of the problem described in the
prompt is simple, i.e., it does not take context from different
files under a project.

RQ1 Summary of Findings:
- Python is the most supported language. Only 2 (out of 9)

benchmarks supported other languages besides Python.
- Most benchmarks (6 out of 9) had prompts whose solution

would mostly require built-in classes.

B. RQ2: Benchmark Quality Evaluation

From our open coding of benchmarks’ prompts, we found 10
quality issues that can be classified into 3 main categories.
Figure 1 shows the quality issue types we found and their
counts, while Table III enumerates the quality issue types we

found. Most issues were related to the prompt’s format and
intent; there were 2,413 (68%) prompts improperly formatted
and 1,621 (53%) with issues that may affect the LLM’s ability
to understand the prompt. Only 659 (18%) of the analyzed
prompts did not have any issues with them.

Form
at475 1,144

17

1,118

2 125

26

Noise

Intent
659

All prompts

Fig. 1. Distribution of quality issues types

–Intent-related issues: This category refers to quality issues
that can affect the LLM’s ability to understand the intent
(i.e., purpose or goal) behind the prompt. We noticed that all
benchmarks had at least one prompt with spelling and gram-
matical errors in them (Q.I.2). However, most of the prompts
in these benchmarks were grammatically correct; only between
2.7% to 20.7% of them had spelling/grammatical errors. We
also found that these benchmarks had prompts whose func-
tion/method’s name does not match the intention described in
the prompt (Q.I.1). It means the benchmark’s developers used
names that do not make the intended functionality clear. For
example, all prompts in ODEX have this issue as the prompts’
function name is in this format f_Prompt_ID. Similarly, all
prompts’ functions in MXEVALMathQA are named problem.
We also found that two benchmarks had prompts with par-



tial/incomplete sentences (Q.I.4). Moreover, MXEVAL and
HumanEval have incorrect sample input-output pairs (Q.I.5);
our analysis showed that ≈1% of their prompts are wrong.
Prompts with incorrect examples of input/output pairs give
inaccurate contextual information to the model. For instance,
the HumanEval’s prompt in Listing 1 should have None instead
of an empty line (line 8).

Dataset: HumanEval [10]. Prompt ID: 12
1 from typing import List, Optional
2 def longest(strings: List[str]) -> Optional[str]:
3 """
4 Out of list of strings, return the longest one. Return the first one in case of
5 multiple strings of the same length.
6 Return None in case the input list is empty.
7 >>> longest([])
8
9 >>> longest(['a', 'b', 'c'])

10 'a'
11 >>> longest(['a', 'bb', 'ccc'])
12 'ccc'
13 """

Listing 1: Example of an incorrect input-output pair.

–Format-related issues: This category refers to problems re-
lated to how prompts are formatted. We found that 7 bench-
marks did not properly use Javadocs/docstrings to express the
function/method’s intent (Q.I.6). This was especially pervasive
on the MXEVAL benchmark; over 81% of its prompts did
not use proper Javadocs/docstrings. Moreover, 439 prompts
were using single/multi-line comments to describe the intended
behavior instead of using docstrings or Javadocs (Q.I.7). We
also found inconsistent formatting in the benchmarks, i.e., style
inconsistencies in them (Q.I.8). For example, we observed
Python benchmarks in which some prompts included type
annotations, but others did not.
–Noise-related issues: This category refer to cases where
prompts contain unnecessary tokens (noise). We found 152
(4%) prompts with confusion questions, e.g., “Is there a nice
Pythonic way to do this?” (Q.I.9). Another noise-related issue
found was URLs in the prompt (Q.I.10), which do not carry
meaningful information for the model.

RQ2 Summary of Findings:
- 2907 (82%) of studied prompts had at least one quality

issue in them.
- Javadoc/docstring formatting issues, function/method’s

name mismatching its intent, and spelling/grammatical
errors, were the three most common quality issues.

C. RQ3: Impact on Performance

We ran five LLMs with the original prompt and fixed prompts.
To better understand how each quality issue may affect an
LLM’s performance, we created prompts that fixed one issue
at a time and prompts that fixed all issues. The green cells in
Tables IV & V highlight the case in which the pass@k of the
fixed prompt was higher than the original prompt.

We found that after fixing spelling and grammatical issues
(Q.I.2), the CodeGen, and WizardCoder models, on average,
performed better than the original Java prompts. Prompts
with a correct JavaDoc and Docstring style (Q.I.6) tended to
perform better than compared to the original prompts. Creating

TABLE IV
Pass@k Comparison (original vs. fixed prompts – Java)

Model Fixed
Issue

Total Modified prompt with fixes Original prompt
pass@1 pass@3 pass@10 pass@1 pass@3 pass@10

CodeGen Q.I.1 6 0.000 0.000 0.000 0.100 0.302 0.639
CodeGen Q.I.2 22 0.155 0.488 0.795 0.164 0.483 0.789
CodeGen Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
CodeGen Q.I.5 1 0.600 0.509 0.957 0.500 0.681 0.995
CodeGen Q.I.6 161 0.157 0.444 0.768 0.219 0.494 0.807
CodeGen Q.I.8 67 0.153 0.305 0.494 0.184 0.448 0.751
CodeGen All 161 0.150 0.375 0.620 0.219 0.494 0.807

SantaCoder Q.I.1 6 0.000 0.000 0.000 0.758 0.819 0.917
SantaCoder Q.I.2 22 0.675 0.823 0.948 0.709 0.850 0.975
SantaCoder Q.I.3 1 0.050 0.150 0.500 0.050 0.150 0.500
SantaCoder Q.I.5 1 0.200 0.681 0.995 0.150 0.855 1.000
SantaCoder Q.I.6 161 0.609 0.781 0.938 0.690 0.848 0.961
SantaCoder Q.I.8 67 0.410 0.494 0.555 0.596 0.800 0.962
SantaCoder All 161 0.532 0.646 0.738 0.690 0.848 0.961
StarCoder Q.I.1 6 0.000 0.000 0.000 0.600 0.725 0.831
StarCoder Q.I.2 22 0.880 0.853 0.941 0.866 0.901 0.972
StarCoder Q.I.3 1 0.000 0.150 0.500 0.000 0.150 0.500
StarCoder Q.I.5 1 0.800 0.926 1.000 0.900 0.982 1.000
StarCoder Q.I.6 161 0.717 0.845 0.947 0.755 0.869 0.939
StarCoder Q.I.8 67 0.432 0.508 0.562 0.742 0.847 0.958
StarCoder All 161 0.574 0.684 0.744 0.755 0.869 0.939

WizardCoder Q.I.1 6 0.000 0.000 0.000 0.758 0.741 0.826
WizardCoder Q.I.2 22 0.680 0.803 0.903 0.659 0.787 0.893
WizardCoder Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
WizardCoder Q.I.5 1 0.950 0.926 1.000 0.950 0.601 0.984
WizardCoder Q.I.6 161 0.641 0.798 0.898 0.683 0.827 0.919
WizardCoder Q.I.8 67 0.403 0.494 0.530 0.617 0.761 0.905
WizardCoder All 161 0.534 0.665 0.724 0.683 0.827 0.919

GPT-3.5 Q.I.1 6 0.000 0.000 0.000 0.875 0.976 1.000
GPT-3.5 Q.I.2 22 0.883 0.950 0.952 0.900 0.952 0.952
GPT-3.5 Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
GPT-3.5 Q.I.5 1 0.550 0.926 1.000 0.750 0.991 1.000
GPT-3.5 Q.I.6 161 0.860 0.941 0.956 0.876 0.945 0.961
GPT-3.5 Q.I.8 67 0.515 0.547 0.552 0.813 0.913 0.944
GPT-3.5 All 161 0.713 0.761 0.770 0.876 0.945 0.961

a consistent prompting style across the dataset is better for
Python prompts from the GPT-3.5-Turbo model.

When fixing incorrect input/output pair examples (Q.I.5) we
noticed that the pass@1 improved for CodeGen and StarCoder.
While we observed cases where fixing one (or all) issues in a
prompt increased a model’s pass@k, there was not a consistent
trend across models and languages. Fixing all issues in a
Python prompt increased the pass@k of SantaCoder, StarCoder,
and GPT-3.5-Turbo models.

RQ3 Summary of Findings:
- Fixing spelling and grammatical issues and having the

standard JavaDoc and Docstring style can perform sim-
ilarly to original prompts.

- Fixing different quality issues in a single prompt can
provide better performance for Python code generation.



TABLE V
Pass@k Comparison (original vs. fixed prompts – Python)

Model Fixed
Issue

Total Modified prompt with fixes Original prompt
pass@1 pass@3 pass@10 pass@1 pass@3 pass@10

CodeGen Q.I.2 27 0.093 0.172 0.341 0.104 0.190 0.363
CodeGen Q.I.1 7 0.000 0.000 0.000 0.014 0.138 0.251
CodeGen Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
CodeGen Q.I.6 164 0.045 0.187 0.352 0.066 0.225 0.423
CodeGen Q.I.8 147 0.057 0.121 0.228 0.058 0.121 0.237
CodeGen All 164 0.039 0.155 0.297 0.066 0.209 0.394

SantaCoder Q.I.2 27 0.000 0.000 0.000 0.000 0.006 0.019
SantaCoder Q.I.1 7 0.000 0.000 0.000 0.000 0.000 0.000
SantaCoder Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
SantaCoder Q.I.6 164 0.002 0.022 0.063 0.002 0.016 0.045
SantaCoder Q.I.8 147 0.002 0.019 0.054 0.002 0.011 0.030
SantaCoder All 164 0.005 0.033 0.081 0.002 0.016 0.045
StarCoder Q.I.2 27 0.002 0.054 0.168 0.013 0.058 0.164
StarCoder Q.I.1 7 0.000 0.000 0.000 0.057 0.079 0.199
StarCoder Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
StarCoder Q.I.6 164 0.023 0.100 0.232 0.035 0.097 0.225
StarCoder Q.I.8 147 0.035 0.086 0.199 0.029 0.085 0.204
StarCoder All 164 0.025 0.105 0.246 0.035 0.097 0.225

WizardCoder Q.I.2 27 0.013 0.011 0.037 0.006 0.038 0.121
WizardCoder Q.I.1 7 0.000 0.000 0.000 0.007 0.043 0.143
WizardCoder Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
WizardCoder Q.I.6 164 0.057 0.095 0.187 0.085 0.124 0.236
WizardCoder Q.I.8 147 0.063 0.095 0.172 0.085 0.124 0.236
WizardCoder All 164 0.005 0.033 0.081 0.002 0.016 0.045

GPT-3.5 Q.I.2 27 0.235 0.450 0.638 0.219 0.422 0.639
GPT-3.5 Q.I.1 7 0.000 0.000 0.000 0.393 0.500 0.565
GPT-3.5 Q.I.3 1 0.000 0.000 0.000 0.000 0.000 0.000
GPT-3.5 Q.I.6 164 0.274 0.458 0.639 0.249 0.402 0.549
GPT-3.5 Q.I.8 147 0.295 0.459 0.630 0.275 0.441 0.590
GPT-3.5 All 164 0.275 0.454 0.640 0.249 0.402 0.549

D. RQ4: Test set Contamination
We ran the NiCad [52] tool to detect generated codes that are
clones of the canonical solutions in the HumanEval dataset.
We can not see any Type-1 and hardly see Type-2 clones
in the SantaCoder, StarCoder, and WizardCoder after using
this tool. These models use the Stack dataset [45], and we
checked if the original HumanEval dataset from OpenAI in
this dataset using a tool provided by them1. Our result and
the tool confirm that there is no test set contamination issue
for the HumanEval dataset for these models. The CodeGen-2.5
models are also trained with the Stack dataset [45] and three
other training sets. There are comparatively more Type-1 and
Type-2 clones from the output of this model. This indicates
that test set contamination issues are present in the CodeGen-
2.5 model.

The result for GPT-3.5 has more Type-1 and Type-2 clones
than other models. As it is a closed source model, we cannot
directly verify its training set to check whether it includes the
HumanEval benchmark. However, given the higher code clone
incidence, this model may have HumanEval’s solution in its
training set, which can justify the high performance of this

1https://huggingface.co/spaces/bigcode/in-the-stack

model. We can also see that modified prompts generate fewer
or equal numbers of clones than the original prompts.

TABLE VI
RQ5 results for each LLMs and temperature (T).

Original Modified
Model T Type-1 Type-2 Type-3 Type-1 Type-2 Type-3
CodeGen 0.2 1 (0.6%) 2 (1.2%) 10 (6.1%) 0 (0.0%) 2 (1.2%) 3 (1.8%)
CodeGen 0.6 1 (0.6%) 5 (3.0%) 21 (12.8%) 0 (0.0%) 4 (2.4%) 20 (12.20%)
SantaCoder 0.2 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
SantaCoder 0.8 0 (0.0%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (0.6%)
StarCoder 0.2 0 (0.0%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
StarCoder 0.8 0 (0.0%) 1 (0.6%) 8 (4.9%) 2 (1.2%) 4 (2.4%) 10 (6.1%)
WizardCoder 0.2 0 (0.0%) 0 (0.0%) 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (0.6%)
WizardCoder 0.8 0 (0.0%) 1 (0.6%) 5 (3.0%) 0 (0.0%) 0 (0.0%) 4 (2.4%)
GPT-3.5 1.0 4 (2.4%) 11 (6.7%) 32 (19.5%) 3 (1.8%) 11 (6.7%) 42 (25.6%)

RQ4 Summary of Findings:
The dataset used for training the CodeGen-2.5 and GPT-3.5
model has a data contamination issue with the HumanEval
dataset.

E. RQ5: Quality Assessment of Developers’ Prompts
We identified 11 quality issues from 198 conversations be-
tween developers and ChatGPT (i.e., 54% of the conversations
had at least one quality issue). Similar to RQ2, these issues
are classified into three categories:
–Intent-related issues: This category refers to the developers’
intention to describe the task for the ChatGPT.

- Unclear prompt description: When the description is
ambiguous, confusing, and not precise, it may lead to a
very different output than the intended one. It can be caused
by a lack of detailed information or user mistakes. For 57
conversations, we observed that ChatGPT did not understand
the prompt description and provided an output that did not
fulfill what the developer asked.

- Spelling or grammatical error: There were 53 developers’
prompts which had a spelling or grammatical error.

- Lack of enough context: Many parameters and values, as
well as the description of related classes and objects, might
be necessary to generate complex code. Problematic prompts
ask to generate complex code without specifying proper
context. We found 51 conversations that missed important
context to solve the task described in the prompt.

- Very Short Sentence: We found 3 conversations with very
short sentences (less than 3 words in length).

- Self Admitted Technical Debt (SATD) We found 6 prompts
that contained Self Admitted Technical Debt (SATD). These
are comments written by developers to indicate buggy,
incomplete, or suboptimal codes (e.g., TODO) [53].

–Formatting-related issues: This category pertains to the
improper formatting done by the developers while describing
a coding task to ChatGPT.

- Not using standard JavaDoc or Docstring: We checked
if the prompts follow standard JavaDoc or Docstring for

https://huggingface.co/spaces/bigcode/in-the-stack


Java or Python, respectively. Providing input in a standard
format should help the code generation tool better utilize
it. We found that developers did not use proper JavaDoc or
Docstring for 43 conversations.

- Messy code snippet: Codes in the prompts can be messy,
with no or incorrect indentation and spacing. There were 14
prompts where the included code snippets were messy.

–Noise-related issues: The prompt from the developers can
contain unnecessary portions that may not be helpful in
expressing the context.

- URL Link or reference: The prompt may contain a URL
Link or reference to an external source. As some versions of
ChatGPT may not be able to browse the Webpage using the
link, the link will not add any additional information to the
prompt. There were 15 prompts from the developers, which
included URLs.

Comparison with benchmarks’ prompts: In RQ2, we ana-
lyzed quality issues on prompts within benchmarks, and in this
RQ we perform the same analysis over developers’ prompts to
ChatGPT. In our analyses, we found that intent-related and
formatting-related quality issues are not the same in both
prompt types. The developers’ prompts included SATD and
very short sentences. Moreover, RQ2 results showed cases that
the benchmark prompts had incorrect input/output pair exam-
ples, and the function name did not match the intent.

RQ5 Findings:
- 54% of the conversations from the developers with Chat-

GPT had at least one issue.
- Prompts from developers mostly lack enough context.

V. Discussion
Benchmarks lack diversity: Our RQ1 findings indicate that
the benchmarks mainly focus on Python and have small code
exercises. According to a recent survey with about 67,000
professional developers from Stack Overflow [38], the most
popular language is JavaScript. At the same time, Typescript
is close to Python, and Java, C#, and C++ are not that behind.
This indicates that we need to expand the benchmark dataset
beyond Python. It is also noticeable from our findings that the
benchmarks are not that complex. At the same time, real-world
software can have thousands of lines of code intra and inter-
dependencies with local and public libraries [54]. Hence, the
current benchmarks do not mimic real-world scenarios. That
is also indicated by a recent study [55] on unit test generation
using Code-LLMs. They perform well on the small samples
from HumanEval [10] but have substandard performance on
real-world open-source projects.
Guidelines for Quality Prompts: Shi et al. [56] showed that
cleaning noisy data from code summarization benchmarks can
improve the performance of code summarization models. In
RQ3, we fixed the quality issues identified in the studied
benchmarks’ prompts. The model’s performance increases a
little according to the result of this research question. However,
it can viewed as an updated version of the benchmark, which
includes less noise, consistent, and more understandable by

human prompts. In addition, the fourth result indicates that
an updated version of the existing dataset can help solve
code contamination issues [11]. From our result, we can
suggest following: (1) Diversify the benchmark’s programming
languages, domains, and complexity (RQ1); (2) Use proper
format and naming convention while defining the code prompts
(RQ2); (3) Provide sufficient context in the prompt (RQ2); (4)
Before using a sample extracted from public repositories in
an evaluation set, check whether it has been used as part of
training sets or not (RQ4). One way to decrease contamination
likelihood is to extract code made available after the knowledge
cut-off date of models; (5) Make developers aware of following
a specific format while working with conversation style code
generation model, as other developers can benefit from reading
them (RQ5).
Data contamination and Possible Solution: The model can
perform well if the evaluation dataset leaks in the training
set. Large language models need a large amount of data to
train to be generalized for different tasks [15]. It can take a
lot of work to deduplicate and remove test samples from the
training set. In addition to that, there can be indirect leakage.
For example, the HumanEval dataset was initially released by
OpenAI, but it can be re-uploaded in other projects. These
projects can be included in the training set, and that can be
hard to capture, and may lead to data contamination. One
of the possible solutions is uploading the evaluation set in a
binary format [57]. Benchmarks can be updated regularly and
benchmark the state-of-the-art models. It can also be better
not to release canonical solutions to the problems, though it
can create an issue to extend and verify the result.
Implication for the Developers and Researchers: A code
generation model’s performance can affect the model’s usage.
Developers may prefer the model which has better performance
than other ones. However, the data contamination issue indi-
cates that the benchmark result can be rigged. Our work in
RQ4 can be a way to check if the model has contamination
issues. Another thing is that real-world software is complex,
and from RQ1, we can see that the existing benchmarks are
not robust. Hence, a model can perform better on the existing
evaluation dataset but may not perform well in real-world
software due to hallucinations [55]. Thus, we need more robust
benchmarks to evaluate the code generation model. While
creating the dataset, researchers should also consider prompts
that are less noisy, human-understandable, and follow standard
coding practices.

VI. Threats to validity

We manually analyzed around 3,900 prompts from developers
and the benchmarks, which can introduce internal threats
to validity. However, we performed a peer review of our
analyses, and Cohen’s kappa score indicates a substantial
agreement between the raters. Moreover, an experienced author
has resolved the disagreements.

An external threat to the validity is that we considered
benchmarks from left to right code generation and used two



versions of HumanEval datasets [10], [22] to answer RQ3
and RQ4. However, HumanEval datasets are the most used
benchmarks for the code generation model, and the majority
of the benchmarks for code generation are left-to-right [7]. As
we used only HumanEval datasets in RQ3 and it contained
only a subset of the found issues in RQ2, the results may
not be generalized for other benchmarks and with different
issues.

To detect testset contamination, we detect code clones using
NiCad, which introduces construct validity threats. However,
NiCad is one of the most used tools for clone detection for
different languages. Another thing is that some problems in
the benchmarks may have solutions that are inherently similar
(e.g., calculating the sum of numbers in an array) that can be
solved in one way, leading to cloned solutions.

VII. Related Work
A. Empirical Study of Benchmarks
Shi et al. described a study on code summarization bench-
marks [56] that characterized the data noises into 12 categories
and ranked benchmarks based on the percentage of noisy
data. They also developed a code-comment cleaning tool and
showed that cleaning improves performance drastically up
to 67.3%. Prior works have also focused on automatically
translating existing datasets to other languages [58]. Cassano
et al. [58] translated the HumanEval and MBPP datasets into
18 different languages and compared the effectiveness of these
two datasets which showed that HumanEval is more useful
than MBPP. Moreover, question-answering (QA), reasoning,
and reading comprehension datasets were also evaluated based
on their effectiveness [59]. Unlike these prior works, we
studied the quality of prompts in code generation bench-
marks.

B. Empirical Study of LLMs
Recently, the study of LLMs has gained substantial attention
owing to their good performance in various applications.
Chang et al. [60] presented a comprehensive survey on
evaluating LLMs from three aspects: what to evaluate, where
to evaluate, and how to evaluate. The authors conclude that no
concrete evidence exists that one particular evaluation protocol
or benchmark—albeit with distinct features and focuses—is
the most beneficial and successful. They also summarized
LLMs’ success and failure cases in different tasks to reveal
their intrinsic strengths and weaknesses.

Chen et al. [61] analyzed the effectiveness of ChatGPT to
assess the quality of the generated text. After comparing three
reference-free evaluation techniques, they deduced that the
Explicit Score—which uses ChatGPT to produce a numerical
score indicating text quality—is the most efficient technique
out of the three exploited techniques. On the other hand,
Wu et al. [62] evaluated the potential and constraints of
different GPT-4 approaches for addressing increasingly diffi-
cult and demanding math problems. Similarly, an assessment
of ChatGPT’s performance on various benchmarks has been

conducted by Laskar et al. [63]. They tested ChatGPT
on 140 tasks and examined 255K responses produced in
these datasets. Valerio et al. [64] discussed the future of
AI-driven software development, specifically the requirement
engineering for LLMs to understand the task. In our work, we
focused on prompt quality for the code generation model and
checked their influence on performance while fixing quality
issues.

C. Memorization in LLMs
Carlini et al. [9] quantitatively measured the risk of memoriza-
tion in generative sequence natural language models. A follow-
up study showed that sensitive personal data can be easily
extracted by simple attacks on a language model like GPT-2
[25]. Moreover, larger models are much more vulnerable to
such attacks. The model’s capacity, the number of duplication
of an example, and the number of tokens of context used
to prompt the model demonstrate a log-linear relationship
with the degree of memorization of the model [12]. Though
it may show unique memorization behaviors, memorization
during fine-tuning was not explored much. Shorter tasks, e.g.,
sentiment analysis and extractive QA are less likely to be mem-
orized; on the other hand, longer tasks, e.g., summarization,
increase the possibility of memorization [65].

Yang et al. [27] studied memorization issues in open-sourced
pre-trained GPT2 models. They compared the model’s output
to the training set, while in our study, we focused on test
set contamination (i.e., models memorizing the answers to
existing evaluation prompts) by including not only open-source
but also closed-source models (i.e., GPT-3.5). Ippolito et
al. [66] contend that definitions of verbatim memorization
are overly restrictive and overlook more nuanced types of
memorization. They create MEMFREE, an effective defense
against all verbatim memorization. They demonstrate how this
seemingly perfect filter is insufficient to protect against training
data leaks.

Unlike these prior works, we studied quality issues in code
generation benchmarks and how they affect a model’s perfor-
mance.

VIII. Conclusion
Code generation models, used to aid developers in writing
code faster, are evaluated using benchmarks. In our paper, we
studied these benchmarks and found that they are limited and
have quality issues. Improving the quality of the benchmark
can provide a better description of the prompt and may lead
to a better performance of the model. In addition to that,
data contamination issues can hinder the usefulness of the
popular benchmark. In the future, we will explore the solution
to automatically fix the prompts with quality issues, and solve
data contamination issues.

References
[1] T. H. M. Le, H. Chen, and M. A. Babar, “Deep learning for source code

modeling and generation: Models, applications, and challenges,” ACM
Comput. Surv., vol. 53, no. 3, jun 2020.



[2] N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users write more
insecure code with ai assistants?” arXiv preprint arXiv:2211.03622,
2022.

[3] I. Shani, “Survey reveals AI’s impact on the
developer experience | The GitHub Blog,” GitHub
Blog, Jun. 2023. [Online]. Available: https://github.blog/
2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/
#methodology

[4] E. Kalliamvakou, “Research: quantifying github copilot’s impact
on developer productivity and happiness,” 2023, [Online;
accessed 10. Nov. 2023]. [Online]. Available: https://github.blog/
2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

[5] A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Productivity assessment of neural
code completion,” in Proc. of the 6th ACM SIGPLAN Int’l Symposium
on Machine Programming, ser. MAPS 2022. New York, NY, USA:
ACM, 2022, p. 21–29.

[6] N. A. Ernst and G. Bavota, “Ai-driven development is here: Should you
worry?” IEEE Software, vol. 39, no. 2, p. 106–110, Mar 2022.

[7] D. Zan, B. Chen, F. Zhang, D. Lu, B. Wu, B. Guan, Y. Wang, and J.-G.
Lou, “When neural model meets NL2Code: A survey,” in Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics, 2023.

[8] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang,
Y. Li, T. Xie, and Q. Wang, “Codereval: A benchmark of pragmatic
code generation with generative pre-trained models,” in International
Conference on Software Engineering (ICSE), 2023.

[9] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 267–284.

[10] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[11] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence: the
threats of using LLMs in software engineering,” in ACM/IEEE 46th
International Conference on Software Engineering - New Ideas and
Emerging Results. ACM/IEEE, Jan. 2024.

[12] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang,
“Quantifying memorization across neural language models,” in The
Eleventh International Conference on Learning Representations, 2023.
[Online]. Available: https://openreview.net/forum?id=TatRHT_1cK

[13] “Chat completions,” Accessed Mar 25, 2023, 2023. [Online]. Available:
https://platform.openai.com/docs/guides/chat

[14] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent Abilities of
Large Language Models,” arXiv, Jun. 2022.

[15] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,
J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners,” 2020.

[16] M. Izadi, R. Gismondi, and G. Gousios, “Codefill: Multi-token code
completion by jointly learning from structure and naming sequences,”
in 44th Intl. Conf. on Software Engineering (ICSE), 2022.

[17] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by feeding
trees to transformers,” in 2021 IEEE/ACM 43rd Intl. Conf. on Software
Engineering (ICSE). IEEE, 2021, pp. 150–162.

[18] A. Svyatkovskiy, S. Lee, A. Hadjitofi, M. Riechert, J. V. Franco, and
M. Allamanis, “Fast and memory-efficient neural code completion,”
in 2021 IEEE/ACM 18th Intl. Conf. on Mining Software Repositories
(MSR). IEEE, 2021, pp. 329–340.

[19] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” arXiv preprint arXiv:2002.08155,
2020.

[20] Y. Gao and C. Lyu, “M2ts: Multi-scale multi-modal approach based
on transformer for source code summarization,” in Proc. of the 30th
IEEE/ACM Intl. Conf. on Program Comprehension, ser. ICPC ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 24–35.

[21] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in Proc. of the 2021 Conf. on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, Nov. 2021, pp. 8696–8708.

[22] B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan, W. U.
Ahmad, S. Wang, Q. Sun, M. Shang, S. K. Gonugondla, H. Ding,
V. Kumar, N. Fulton, A. Farahani, S. Jain, R. Giaquinto, H. Qian, M. K.
Ramanathan, R. Nallapati, B. Ray, P. Bhatia, S. Sengupta, D. Roth, and
B. Xiang, “Multi-lingual evaluation of code generation models,” in The
Eleventh International Conference on Learning Representations (ICLR),
2023.

[23] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[24] M. L. Siddiq, J. C. S. Santos, S. Devareddy, and A. Muller, “Generate
and pray: Using sallms to evaluate the security of llm generated code,”
2024.

[25] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2633–2650.

[26] Z. Zhou, J. Xiang, C. Chen, and S. Su, “Quantifying and analyzing
entity-level memorization in large language models,” arXiv preprint
arXiv:2308.15727, 2023.

[27] Z. Yang, Z. Zhao, C. Wang, J. Shi, D. Kim, D. Han, and D. Lo,
“Unveiling memorization in code models,” in 2024 IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2024, pp. 856–856.

[28] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[29] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software
engineering research: a critical review and guidelines,” in Proceedings
of the 38th International conference on software engineering, 2016, pp.
120–131.

[30] T. Xiao, C. Treude, H. Hata, and K. Matsumoto, “Devgpt: Studying
developer-chatgpt conversations,” in Proceedings of the International
Conference on Mining Software Repositories (MSR 2024), 2024.

[31] H. Yu, B. Shen, D. Ran, J. Zhang, Q. Zhang, Y. Ma, G. Liang,
Y. Li, Q. Wang, and T. Xie, “CoderEval: A Benchmark of Pragmatic
Code Generation with Generative Pre-trained Models,” arXiv e-prints,
p. arXiv:2302.00288, Feb. 2023.

[32] Z. Wang, S. Zhou, D. Fried, and G. Neubig, “Execution-based evaluation
for open-domain code generation,” 2023.

[33] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, “Program synthesis
with large language models,” arXiv preprint arXiv:2108.07732, 2021.

[34] D. Zan, B. Chen, Z. Lin, B. Guan, Y. Wang, and J.-G. Lou, “When
language model meets private library,” 2022.

https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://github.blog/2023-06-13-survey-reveals-ais-impact-on-the-developer-experience/#methodology
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://openreview.net/forum?id=TatRHT_1cK
https://platform.openai.com/docs/guides/chat


[35] D. Zan, B. Chen, D. Yang, Z. Lin, M. Kim, B. Guan, Y. Wang, W. Chen,
and J.-G. Lou, “Cert: Continual pre-training on sketches for library-
oriented code generation,” 2022.

[36] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Ra-
jamani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” 2021.

[37] A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi,
and H. Hajishirzi, “MathQA: Towards interpretable math word
problem solving with operation-based formalisms,” in Proceedings
of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 1. Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 2357–2367. [Online].
Available: https://aclanthology.org/N19-1245

[38] S. Overflow, “Stack overflow devlopers survey,”
2023. [Online]. Available: https://survey.stackoverflow.co/2023/
#most-popular-technologies-language-prof

[39] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochemia
medica, vol. 22, no. 3, pp. 276–282, 2012.

[40] “Code Generation on HumanEval,” Nov. 2023, [Online; accessed
14. Nov. 2023]. [Online]. Available: https://paperswithcode.com/sota/
code-generation-on-humaneval

[41] E. Nĳkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A conversational paradigm for program synthesis,” arXiv
preprint, 2022.

[42] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy,
“The pile: An 800gb dataset of diverse text for language modeling,”
2020.

[43] G. Inc, “Bigquery public datasets,” 2022. [Online]. Available:
https://cloud.google.com/bigquery/public-data

[44] E. Nĳkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “Code-
gen2: Lessons for training llms on programming and natural languages,”
ICLR, 2023.

[45] D. Kocetkov, R. Li, L. Ben Allal, J. Li, C. Mou, C. Muñoz Ferrandis,
Y. Jernite, M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau, L. von Werra,
and H. de Vries, “The stack: 3 tb of permissively licensed source code,”
Preprint, 2022.

[46] L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis,
N. Muennighoff, M. Mishra, A. Gu, M. Dey et al., “Santacoder: don’t
reach for the stars!” arXiv preprint arXiv:2301.03988, 2023.

[47] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[48] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “Wizardcoder: Empowering code large language models
with evol-instruct,” 2023.

[49] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[50] G. Inc., “Github copilot : Your ai pair programmer,” 2022, [Online;
accessed 10. Oct. 2022]. [Online]. Available: https://copilot.github.com

[51] S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken, and
P. S. Liang, “Spoc: Search-based pseudocode to code,” in Advances
in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.
Curran Associates, Inc., 2019.

[52] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in 2011 IEEE
19th International Conference on Program Comprehension, 2011, pp.
219–220.

[53] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 91–100.

[54] S. M. Meidani, “Towards an enhanced dependency graph,” Master’s
thesis, University of Waterloo, 2022.

[55] M. L. Siddiq, J. C. S. Santos, R. H. Tanvir, N. Ulfat, F. A. Rifat, and
V. C. Lopes, “Using large language models to generate junit tests: An
empirical study,” in 28th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2024), 2024.

[56] L. Shi, F. Mu, X. Chen, S. Wang, J. Wang, Y. Yang, G. Li, X. Xia,
and Q. Wang, “Are we building on the rock? on the importance of data
preprocessing for code summarization,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 107–119.

[57] A. Jacovi, A. Caciularu, O. Goldman, and Y. Goldberg, “Stop uploading
test data in plain text: Practical strategies for mitigating data contamina-
tion by evaluation benchmarks,” arXiv preprint arXiv:2305.10160, 2023.

[58] F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin,
D. Pinckney, M.-H. Yee, Y. Zi, C. J. Anderson, M. Q. Feldman, A. Guha,
M. Greenberg, and A. Jangda, “Multipl-e: A scalable and polyglot
approach to benchmarking neural code generation,” IEEE Transactions
on Software Engineering, vol. 49, no. 7, pp. 3675–3691, 2023.

[59] K. Zhou, Y. Zhu, Z. Chen, W. Chen, W. X. Zhao, X. Chen, Y. Lin,
J.-R. Wen, and J. Han, “Don’t make your llm an evaluation benchmark
cheater,” 2023.

[60] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang, W. Ye, Y. Zhang, Y. Chang, P. S. Yu, Q. Yang, and
X. Xie, “A survey on evaluation of large language models,” 2023.

[61] Y. Chen, R. Wang, H. Jiang, S. Shi, and R. Xu, “Exploring the use
of large language models for reference-free text quality evaluation: An
empirical study,” 2023.

[62] Y. Wu, F. Jia, S. Zhang, H. Li, E. Zhu, Y. Wang, Y. T. Lee, R. Peng,
Q. Wu, and C. Wang, “An empirical study on challenging math problem
solving with gpt-4,” 2023.

[63] M. T. R. Laskar, M. S. Bari, M. Rahman, M. A. H. Bhuiyan, S. Joty,
and J. X. Huang, “A systematic study and comprehensive evaluation of
chatgpt on benchmark datasets,” 2023.

[64] V. Terragni, P. Roop, and K. Blincoe, “The Future of Software
Engineering in an AI-Driven World,” in Workshop 2030 Software
Engineering co-located with FSE 2024, 2024. [Online]. Available:
https://arxiv.org/abs/2406.07737

[65] S. Zeng, Y. Li, J. Ren, Y. Liu, H. Xu, P. He, Y. Xing, S. Wang, J. Tang,
and D. Yin, “Exploring memorization in fine-tuned language models,”
arXiv preprint arXiv:2310.06714, 2023.

[66] D. Ippolito, F. Tramèr, M. Nasr, C. Zhang, M. Jagielski, K. Lee, C. A.
Choquette-Choo, and N. Carlini, “Preventing verbatim memorization
in language models gives a false sense of privacy,” arXiv preprint
arXiv:2210.17546, 2022.

https://aclanthology.org/N19-1245
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://paperswithcode.com/sota/code-generation-on-humaneval
https://paperswithcode.com/sota/code-generation-on-humaneval
https://cloud.google.com/bigquery/public-data
https://copilot.github.com
https://arxiv.org/abs/2406.07737

	Introduction
	Background
	Large Language Models
	Code Generation Benchmarks
	Memorization in LLMs

	Methodology
	RQ1: Code Generation Benchmarks Comparison
	RQ2: Benchmark Quality Evaluation
	RQ3: Impact on Performance
	RQ4: Contamination Issues
	RQ5: Quality Assessment of Developers' Prompts

	Results
	RQ1: Code Generation Benchmarks Comparison
	RQ2: Benchmark Quality Evaluation
	RQ3: Impact on Performance
	RQ4: Test set Contamination
	RQ5: Quality Assessment of Developers' Prompts

	Discussion
	Threats to validity
	Related Work
	Empirical Study of Benchmarks
	Empirical Study of LLMs
	Memorization in LLMs

	Conclusion
	References

