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Abstract—In recent years, the use of automated source code
generation utilizing transformer-based generative models has
grown in popularity. These models can generate code according to
the developers’ requirements. However, recent research showed
that these automatically generated source codes can contain
vulnerabilities and other quality issues. Despite researchers’
and practitioners’ attempts to enhance code generation models,
retraining and fine-tuning large language models is not only
time-consuming but also resource-intensive and costly. Thus,
in this paper, we describe FRANC, a lightweight framework
for recommending more secure and high-quality source code
derived from transformer-based code generation models. FRANC
includes a static filter to make the generated code compilable with
heuristics and a quality-aware ranker to sort the code snippets
based on a quality score. Moreover, the framework uses prompt
engineering to fix persistent quality issues. We evaluated FRANC
with five Python and Java code generation models and six prompt
datasets, including a newly created one in this work (FRANC).
The static filter improves 9% to 46% Java suggestions and 10%
to 43% Python suggestions regarding compilability. The average
improvement over the NDCG@10 score for the ranking system
is 0.0763, and the repairing techniques repair the highest 80%
of prompts. FRANC takes, on average, 1.98 seconds for Java; for
Python, it takes 0.08 seconds.

Index Terms—code generation, code quality, code security, large
language models

I. INTRODUCTION

Large Language Models (LLMs) are increasingly perform-
ing well in many natural language processing tasks, such
as text generation, translation, and summarization [1]. One
particularly relevant application of these LLMs to software
engineering is code generation, in which LLMs are trained and
fine-tuned with large amounts of code snippets [2]–[5]. These
techniques help developers by generating the implementation
of functions/programs based on provided prompts [6].

Although LLM-based code generation techniques may pro-
duce functionally correct code, they can contain code smells
and vulnerabilities [7]–[9]. A recent study showed that LLMs
are fine-tuned with samples containing harmful coding patterns
that leak to the generated code [7]. Another study found that
GitHub Copilot can produce vulnerable code [8]. With the
increasing use of LLM-based code assistants, these problem-
atic code snippets can get deployed into production, negatively
affecting the software system’s security and reliability.

To improve the quality of the generated code, we first need
a good dataset (i.e., free of quality issues) [10]. However,
collecting training data is time-consuming [11] and challeng-
ing because code datasets commonly used for training contain
quality issues (e.g., bugs, vulnerabilities, and code smells [7],
[12], [13]) which would require vetting these code samples
to remove or repair low quality training samples. Moreover,
fine-tuning an LLM model is a resource-hungry process [14]
which requires at least one GPU, and pre-training is typically
performed on a large cluster of GPUs. Although models can
make inferences without GPUs, the throughput may not be
optimal. For example, we used a GPU with 24 GB RAM when
using a model with 2.7 billion parameters to generate code
with 128 tokens (and up to 2,048 context tokens). To generate
more tokens and/or larger models, more GPUs or a more
expensive GPU with a larger RAM would be needed.

Although LLM fine-tuning can be done in the cloud to avoid
acquiring expensive GPUs, it is still costly. For example,
OpenAI’s fine-tuning API currently costs U$0.03 dollars per
1,000 tokens (8K context GPT-4 model) [15]. Since a large
dataset may have billions of tokens, fine-tuning this model
would cost thousands of dollars. Besides fine-tuning costs,
there is a separate cost for inference. It costs U$0.06 per 1,000
tokens to use your own fine-tuned GPT-4 model.

While recent works [16]–[18] aimed to improve the output of
generated code, they focus on a specific quality attribute (e.g.,
security) and require collecting training samples to train/fine-
tune the models. Since LLMs can generate code with quality
issues, we need a non-expensive way to provide the best
generated code to the user. In light of this need, this paper
describes FRANC, a lightweight, configurable, and model-
agnostic framework to filter, rank, and repair code auto-
matically generated by LLMs. FRANC (Filter, Rank, And
model-agNostic Configurable) framework works by taking as
input a developer’s prompt and then using (i) static filters
to remove & repair non-compilable code, (ii) off-the-shelf
quality issue detection tools to rank generated code snippets
with respect to their measured quality, and (iii) generated
knowledge prompting to fix quality issues.

To demonstrate its effectiveness, we conducted an empirical
evaluation in which we used FRANC to improve the quality of



Java and Python code generated by five models (CodeParrot,
InCoder, CodeGen, PolyCoder, and GPT-3.5-turbo). In this
experiment, we generated code from 1,081 prompts collected
from existing code generation benchmarks [2], [19]–[22] and
70 prompts we created from questions posted on StackOver-
flow. This framework also can effectively repair suggestions
to ensure high-quality code in the output.

This paper’s contributions are (1) a novel lightweight frame-
work (FRANC) to filter, rank and repair the output of code
generation models based on code quality; (2) automated
filtering capabilities to remove non-compilable and unnec-
essary portions of the generated code to minimize human
inspection; (3) a demonstration of how prompt engineering
(and different prompt repair structures) can help to repair
quality issues automatically; (4) an empirical investigation
comparing the effectiveness of the framework with existing
code generation and infilling models; (5) a dataset of 70
prompts. This paper’s replication package is available at:
https://github.com/s2e-lab/FRANC.

II. BACKGROUND

This section explains key concepts used in this work.

A. LLM-based Code Generation

LLM-based code generation leverages NLP techniques to
generate source code from a given prompt. The prompt can be
a combination of natural language and code (e.g., a function
definition, expressions, code comments etc.). The code genera-
tion problem was previously tackled as a sequence-to-sequence
(seq2seq) learning problem [23]. Prior works used Recurrent
Neural Networks (RNN) and neural networks based on Long
Short-Term Memory (LSTM) [23], [24] to generate source
code. The LSTM and RNN use a feedback loop during training
to memorize specific portions of the input for learning.

The attention-based transformer architecture revolutionized
the field of language learning in 2017. The transformer
is based on an encoder-decoder architecture that leverages
the self-attention mechanism to weigh the importance of
each input data point [25]. There are several transformer-
based deep learning models, like BERT (Bidirectional Encoder
Representations from Transformers) [26], T5 (Text-to-Text
Transformer) [27] and GPT-3 (Generative Pre-trained Trans-
former) [28]. These language learning models can be fine-
tuned with code-related datasets for software engineering tasks
such as source code completion [29]–[31], search [32], and
summarization [33]. Examples of this type of model include
CodeBERT [32], CodeT5 [34], and Codex [2].

B. Code Quality and Code Smells

Code quality is a broad term used to refer to code snippets
that are free of bugs and conformant to its requirements [35].
The quality of a source code is usually expressed in terms
of defect rate (i.e., measured as the number of defects per
unit, e.g., lines of code, function points, etc.) and reliability
(measured in terms of failure occurrences, e.g., the number of

failures during a period, mean time to failure, etc.). However,
the main indicator of high-quality code that complies with
specifications depends on the vendors’ demands. To ensure
code quality, a common coding standard needs to be adopted
by every contributor. Different languages adopt specific coding
practice protocols. For example, PEP-8 [36] is a well-known
guide for coding practice standards for Python. It provides
an extensive guide for code layout, whitespace usage, and
naming conventions etc. For instance, according to the guide,
the coding layout should have 4 spaces per indentation level,
and spaces are the preferred indentation method.

An indication of poor system design and implementation
practices is a code smell (also known as a “bad code smell”
or “smell”) [37]. These code smells can introduce software
maintenance problems. Furthermore, they contravene funda-
mental software design rules, reducing the product’s potential
effectiveness. These issues increase the possibility of future
errors or failures or can hinder software development [38],
affecting the software’s reliability. For example, the code in
Listing 1 may throw a ValueError if the input at line 3
cannot be parsed to int. Although there is a try-except

block to catch the exception (highlighted), the exception is not
handled, which is an example of a code smell [39].

Code smell example
1 try:
2 num = input('Enter number:')
3 num = int(num)
4 except ValueError:
5 pass

Security smell example
1 import hashlib
2 def validate(c, h):
3 hash_md5 = hashlib.md5(c)
4 hash = hash_md5.hexdigest()
5 return hash == h

Listing 1: Examples of a code smell and security smell

Insecure coding, flaws with design choices, and coding stan-
dard violations all fall under the umbrella phrase “code smell”.
Security code smells (or simply “security smells”) are a subset
of code smells. They are frequently used programming patterns
that could result in vulnerabilities [40], [41]. Security smells
point to the possibility of a vulnerability, even if they may
not constitute vulnerabilities entirely by themselves [42]. For
example, the code (shown on the right) in Listing 1 is taken
from CodeQL examples [43]. It uses the md5 hash function
that is unsafe, which is related to CWE-327: Use of a Broken
or Risky Cryptographic Algorithm [7].

In our work, we focus on the quality of automatically
generated code with respect to following code standards and
the absence of code smells and security smells. Specifically,
our framework aims to ensure that the top generated code is
free of quality issues, as engineers often focus on the first
generated code [44], [45].

C. Motivating Example

A code generation model can generate multiple (ranked)
suggestions for a given prompt. However, some produced sug-
gestions may contain quality issues (e.g., security smells) [7].
For example, consider that we provide the prompt in Listing 2
(highlighted lines) to GitHub Copilot [46]. Although the
generated code (lines 8-11) on the first position of GitHub
Copilot’s rank is functionally correct, it contains a SQL

https://github.com/s2e-lab/FRANC
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Fig. 1. Framework overview and evaluation parameters

injection vulnerability because it uses a formatted string to
construct the query (line 9).
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Listing 2: Example the top-1 code generated by GitHub copilot

When we inspect the remaining generated suggestions, we can
see code snippets that are still functionally correct but that do
not contain a SQL Injection (or any other vulnerability). For
instance, one of the lowest-ranked suggestions (shown as a
callout Listing 2) uses a parameterized query to avoid SQL
injection vulnerability. Since this suggestion is not the top
one recommended generated by the model as developers are
biased towards the first suggestion they see [47], we need
a lightweight ranking system to address the quality issues
of the generated suggestions. Thus, our goal is to show
as the top suggestion to the user a source code that is
vulnerability-free, smell-free code, and follows standard
coding practices.

III. OUR FRAMEWORK (FRANC)

Fig. 1 provides an overview of our lightweight quality-
aware framework (FRANC) for code generation (“Framework”
swimlane). FRANC has five phases that are model-agnostic.
Each phase can be tailored to the underlying programming
language and LLM being used by the developer (as shown in
the “Evaluation” swimlane).

During the 1 prompt and context creation phase, software
engineers specify the code’s expected behavior. 2 In the
code generation phase, FRANC uses an existing LLM to
generate code snippets. Since these models may generate
an n amount of sorted samples, the output of this phase is
the framework’s suggestion inventory (i.e., a sorted set of n
automatically generated code snippets). 3 In the lightweight
static filtering phase, FRANC applies rules to generated code
in order to automatically fix and/or remove code snippets in

the suggestion inventory with syntax errors. The output of
this phase is a set of x eligible code snippets that passed
the filtering criteria (x ≤ n). 4 In the quality-based ranking
phase, FRANC sorts the code snippets from the previous phase
based on a configurable quality score. 5 In the repairing
phase, FRANC repairs problematic generated code via gen-
erated knowledge prompting [48] in which FRANC crafts a
prompt that instructs the code generation model to fix quality
issues (e.g., “Fix the buffer overflow at line 10”).

Our framework relies on two insights. Insight 1: as shown in
Section II-C, although the first generated code by a LLM may
be insecure, the model can also generate alternative versions
that do not contain a vulnerability, but that are ranked at lower
positions. For instance, the correct (and secure) code shown
in Listing 2 was also generated by GitHub Copilot for the
given prompt, but it was ranked on the 7th position. Insight 2:
code repair can be treated as a code generation task [49], [50],
but with a prompt that explicitly instructs the model to fix a
quality problem in a given location. In the next sections, we
detail each of the five phases of our framework.

A. Phase 1: Prompt Creation

First, the software engineer creates a prompt for the code
generation model. The lines 1–6 (highlighted in blue) in the
code snippet in Listing 3 is an example of input an engineer
can provide to an LLM. It contains an import statement, a
function declaration, and a comment describing the function’s
intended functionality. This prompt instructs the LLM to
generate the body of the function yaml_load(filename)
that will parse a YAML file, create an object with the loaded
data, and return it to the caller of the function.

B. Phase 2: Code Generation

In the second phase, FRANC uses an LLM to generate code.
Since our framework is model-agnostic, the model can be an
open-source model (i.e., datasets and parameters are publicly
available) or a closed-source one (commercial). The model
takes as input the prompt and produces multiple sorted code
suggestions (code snippets). The model’s sorted list of code
snippets composes FRANC’s suggestion inventory. For in-
stance, the code in Listing 3 is the top suggestion generated by
CodeGen (2 billion parameters) [51] when given the prompt



described in Section III-A. This code repeats the prompt (lines
1-6), provides an implementation to yaml_load(filename),
and contains an unnecessary and incomplete function (lines
10-18). This incomplete function serializes objects into a
YAML file, which does not match the intent in the prompt
and has a syntax error (missing closing parenthesis at line
18). Thus, in the next phase, FRANC removes this unnecessary
function and other types of syntax issues.
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Listing 3: Generated code example

C. Phase 3: Static Filtering

As shown in Listing 3, code snippets in the suggestion
inventory may include unnecessary blocks of code (i.e., lines
of code that do not match the intent specified in the prompt).
Moreover, they may have syntax errors [7]. Consequently,
developers need to manually vet and fix the code when it is not
compilable or contains unnecessary extra code. Therefore, in
this third phase, our framework inspects each snippet from the
Suggestion Inventory and applies a set of rules to (a) remove
unnecessary code from the snippet, and (b) check whether it
is syntactically correct. The output of this phase is a set of
eligible snippets that had any extra code removed from it (a)
and passed the syntax check (b).

The rules used for this filtering phase are configurable, mean-
ing that they are tailored to the underlying programming
language being used. For example, a rule that can be applied
to clean the Python code in Listing 3 is to remove any code
after from the prompt’s function. The resulting snippet would
not contain lines 10-19.

D. Phase 4: Quality-based Ranking

Automatically generated code can contain several quality
issues, such as coding standard violations, code smells, and
vulnerabilities [7], [8], [22]. Thus, the ranking used by the
code generation model may produce code with quality issues
as the first (top-1) suggestion. Hence, FRANC includes a
configurable quality-based ranker that sorts code snippets in
a model’s output based on a quality score Q(ci):

Q(ci) =

m∑
j=1

wjqj(ci) where
m∑
j=1

wj = 1 and wj ≥ 0 (1)

Each code snippet ci ranked at the position i in the model’s
output is evaluated according to different quality factors

qj(ci) that take into account a specific quality attribute (e.g.,
security, performance, code smells etc.). Each quality factor
(0 ≤ qj(ci) ≤ 1) has a corresponding non-negative weight
wj . Thus, the quality score Q(ci) is a weighted average of
each quality factor qj(ci), ranging from 0 (lowest quality)
to 1 (highest quality). FRANC ranks all code snippets based
on their quality score Q(ci) and presents the best one to the
developer. If multiple snippets have the same score, FRANC
keeps the original order from the code generation model. For
example, if the code snippets c3 and c8 have the same highest
quality score, i.e., Q(c3) = Q(c8), then FRANC chooses c3 to
be in the first position.

E. Phase 5: LLM-based Code Quality Repair

Although FRANC has a quality-based ranking phase to ensure
that the highest quality code snippet is given to the developer,
it might be the case that the top 1 code suggestion includes
quality issues because all code snippets generated by the
model had quality issues. Consequently, that would require
the engineer to go through the burden of manually identifying
the quality problems in the generated code and fixing them.
Hence, FRANC includes a configurable automated repairing
phase that relies on the LLM itself to fix the problematic lines
in the code snippet. The key insight of this phase is that code
repair can be treated as a code generation task [49], [50], but
with a prompt that explicitly instructs the model to fix a quality
problem in a given location.

FRANC repairs code samples via Generated Knowledge
Prompting (i.e., prompting for a task by incorporating knowl-
edge or information [48]). In this case, FRANC uses knowledge
from the static analyzers to create the prompts. If the top-
1 code snippet after the quality-based ranking has a quality
score below an acceptable threshold τ (i.e., Q(c1) < τ ), then
FRANC creates a repair prompt and re-passes this engineered
prompt to the model to fix the code.

FRANC uses the issue’s description and location detected by
a static analyzer to craft a repair prompt using three different
structures (P1, P2, and P3) and send it back to the code
generation model to generate code again. To illustrate these
different prompt repair structures, consider the generated code
to be repaired shown in Listing 4 (where the highlighted lines
were the original prompt used to generate this code). The
prompt structure P1 adds source code comments after the
code to be repaired in the format “Fix: At line « # »,

« error msg »\n Fixed Code:\n”, as shown in Listing 4
(lines 10-11). The error message comes from a static analyzer
(in this example, it comes from Bandit).

The second prompt structure (P2) appends to the code to
be repaired a comment followed by the original prompt. For
example, the repair prompt for the code in Listing 4 would
include the lines 1–11 followed by lines 1-5 (i.e., the original
prompt). The third prompt repair structure (P3) only includes
the code to be repaired up to the first line that has an issue,
followed by the fix message. For instance, while repairing the
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Listing 4: Generated code with a SQL injection (line 7)

code in Listing 4, this prompt would only include lines 1–6
followed by lines 10–11.

It is important to clarify that the same code snippet can have
multiple issues. Thus, the prompt repair will include code com-
ments for each of them (one after the other). Moreover, when
a static analyzer produces messages without any specific line
number, the repair prompt only includes the message but not
the line (i.e., // Fix: <Quality Issue Description>).
Lastly, it is important to highlight that FRANC attempts to
repair the output only once.

IV. FRAMEWORK EVALUATION

To evaluate the applicability and usefulness of our framework,
we implemented FRANC’s components as outlined in Figure 1
(Evaluation swimlane) to improve the quality of Python and
Java code generated by five different LLMs. We focused on
Python and Java because these are two of the most popular
programming languages (based on a recent survey [52]). More-
over, we aimed to demonstrate how FRANC’s configurable
architecture enables a model-agnostic approach for improving
the quality of generated code by choosing two languages and
five different code generation models. In this evaluation, we
answered the following research questions:

RQ1: How well does the static filter correct and remove
non-compilable code from the suggestion inventory?

Code generation models can output multiple suggestions for
a single prompt, but not all suggestions are compilable [53].
Hence, our framework includes a lightweight rule-based static
filter that automatically cleans the generated Python and Java
code to remove any non-compilable code from the suggestion
inventory (Phase 3). In this RQ, we measure the effectiveness
of this static filtering phase.

RQ2: How well does FRANC’s quality-based ranker im-
prove the quality of the generated code?

In Phase 4, FRANC uses a quality-based ranking to sort eligible
snippets (i.e., code snippets that passed the filtering in Phase
3). Thus, we investigate whether FRANC’s quality-based rank-
ing performs better than the model’s original ranking.

RQ3: Can an LLM-based code generation model effec-
tively repair code with quality issues?

FRANC includes a repairing phase ( 5 ) to fix a code snippet
with quality issues using generated knowledge prompting. It
leverages the existing code generation model to fix the quality
problem. Hence, we study the effectiveness of this LLM-based
code-repairing approach.

RQ4: How much overhead is introduced by the framework?

FRANC relies on static analyzers and is built on top of an
existing code generation model. Therefore, it creates an extra
overhead concerning the time to filter problematic snippets,
rank the output from the code generation model, and repair
it. This question explores how much overhead the framework
introduced due to these additional phases.

The next sections describe the methodology we followed to
answer each of these research questions.

A. Prompts Creation

To answer our RQs, we retrieved prompts from four existing
code generation benchmarks [2], [19]–[22] that have been
used by many prior works [53]–[58]. We also created our own
set of prompts based on questions from StackOverflow (which
we refer to as SOEVAL). The prompts in these benchmarks
instruct the code generation models to generate a method/-
function’s body based on the context in the docstring/JavaDoc
and the method/function’s signature. Below, we explain each
benchmark used and our own benchmark.

- AIXBENCH [19] is a benchmark dataset that contains 175
prompts to evaluate the generation of Java code. The natural
language description in the prompts is written in English and
Chinese. We extracted 175 Java prompts with descriptions
written in English.

- CODEREVAL [20] is a dataset containing 230 prompts for
both Java and Python retrieved from 43 and 10 open-source
Python and Java projects hosted on GitHub, respectively. We
retrieved a total of 460 prompts from this dataset.

- MULTILINGUAL HUMANEVAL [21] is a dataset with
prompts for multiple programming languages created from
the Python-based original HumanEval dataset [2]. We used
161 Java samples from Multilingual HumanEval and 164
from the original Python-based HumanEval dataset. Hence-
forth, we will refer to both datasets as simply HUMANEVAL.

- SECURITYEVAL is a benchmark dataset for evaluating
Python code generation models from the perspective of secu-
rity [22]. The latest version of this benchmark contains 121
prompts covering 69 entries from the Common Weakness
Enumeration (CWE) [59].

- SOEVAL is created by us by mining questions from Stack-
Overflow. Our goal was to create a prompt dataset that
reflects the real-life needs of software developers. To build
this dataset, we first collected 500 popular and recent
questions with Python and Java tags for each. From these
1,000 questions, we applied a set of inclusion and exclusion
criteria. The inclusion criteria were: the question has to
(1) explicitly ask “how to do X” in Python or Java; (2)



include code in its body; (3) have an accepted answer
that includes code. We excluded questions that were (1)
open-ended and asking for best practices/guidelines for a
specific problem in Python/Java; (2) related to finding a
specific API/module for a given task; (3) related to errors
due to environment configuration (e.g., missing dependency
library); (4) related to configuring libraries/API; (5) syntax-
specific types of questions. By applying the criteria above
to these 1K questions, we obtained 28 and 42 prompts for
Java and Python, respectively.

Therefore, we had a total of 1,151 prompts, in which 594 and
557 prompts are for Java and Python, respectively.

B. Code Generation Models

We used the code generation models listed below (the first
four are open-source, whereas the last one is closed-source)
to create the suggestion inventory. The input of these models
are the prompts previously collected (§ IV-A).

- CodeParrot [60] is a GPT-2 [61] model trained from
scratch on Python code. It is fine-tuned on a clean and
deduplicated large dataset (>100GB). It can be used for code
generation and other downstream tasks (e.g., complexity
prediction, code explanation, etc.). It has two versions: one
is CodeParrot-small with 110 million parameters, and the
other is the regular one with 1.5 billion parameters.

- InCoder [62] is a decoder-only transformer model [25] that
can synthesize and edit code via infilling. It has one version
with 1.3 billion parameters and another with 6.7 billion. We
used the small version in our evaluation (1.3B).

- CodeGen [51] is a group of models for synthesizing pro-
grams using autoregressive languages. It has three types:
multi, mono, and nl. The multi type is fine-tuned with
multiple programming languages. The mono type is trained
only with code written in Python. The nl type is fine-tuned
mainly on natural language. Thus, we used the multi and
mono model types. We used two versions for these models:
one with 350 million parameters and the other with 2 billion.

- PolyCoder [55] is a family of three large open-source
language models based on the GPT-2 architecture. They
have been trained on a corpus of code from 12 differ-
ent programming languages (e.g., C/C++, C#, Go, Java,
JavaScript, Python, Ruby, etc.), using about 25K repositories
per language to build the corpus. The dataset was then pre-
processed, deduplicated, and filtered, resulting in a training
dataset size of 424GB. The parameters of these models range
from 160 million to 2.7 billion parameters. We used all three
versions of this model (160M, 400M, and 2.7B).

- GPT-3.5-Turbo is a closed-source model developed by
OpenAI that supports ChatGPT, a popular chatbot [63]. In
our experiment, we have used the version released in May
2023, which allows back-and-forth conversation with a user
to generate code [53].

Suggestion Inventory Creation: We instructed each model to
generate 10 suggestions for each prompt. For CodeParrot,
InCoder, CodeGen, and PolyCoder, we instructed the model

to generate additional 128 tokens after the prompt, i.e., the
model took the prompt and context as input and then generated
the next probable token (e.g., a keyword) that can come after
this prompt and did not stop until 128 generated tokens.
However, for GPT-3.5-Turbo, we instructed it to generate
512 tokens. As it is optimized for conversations, it usually
includes a textual explanation and the generated code with
a modified version of the prompt. Hence, we extended the
token size for this model and used the OpenAI API to generate
results. Thus, we have 102,100 code samples in the suggestion
inventory, i.e., 41,010 Java code snippets, and 61,090 Python
code snippets.

Token Limits Rationale: To decide the token size limits,
we ran a small experiment using SECURITYEVAL dataset.
This dataset [22] includes an example of insecure code that
can be generated from the given prompt. We tokenized these
examples and found that they have an average of 50 tokens.
Thus, we configured the open source models to generate 128
tokens (≈ 2.5× higher than the average number of tokens).
For GPT-3.5-Turbo, as we explained before, we increased the
limit to 512 to take into account explanations that are provided
as part of the output (which consumes tokens).

C. Static Filtering

In our evaluation, we implemented six rules1 to clean the
generated code snippets before filtering them from the sug-
gestion inventory based on their syntax check. We adopted
the rules R1, R3, and R6 from a recent study on unit test
generation using LLMs [53]. The first rule (R1) removes
any text before and after backticks (i.e., ``` code ```).
The second rule (R2) adds part of the prompt or the full
prompt if it is not found in the generated code (otherwise,
the code fails the syntax check because it does not include
the function/method signature, import statements, etc.). rules
R3 and R4 are Python-specific and remove extra code after
the target method. The third rule (R3) removes any code
found after a "\n```\n\n##", or "\n</code>" pattern. The
fourth Python-specific rule (R4) removes any additional code
after the target method/function. The fifth rule (R5) removes
any code in an extra Java class (i.e., it only keeps the Java
class mentioned in the prompt). The sixth Java-specific rule
(R6) fixes incomplete code by iteratively deleting lines (from
bottom to top) and adding 1-2 curly brackets for a Java code.
Moreover, if the prompt was meant to repair quality problems
(§ IV-E), we apply an additional rule (R7) before applying
these six rules. This rule replaces the old problematic code
(i.e., containing a code/security smell) with the newly repaired
source code.

D. Quality-based Ranking

Up to this point, the generated suggestions are compilable but
may still have quality issues, such as code and security smells
[7]. We used Bandit to discover security smells in Python code

1Due to space constraints, we superficially describe the rules in here, but
we detail each of them with examples in our supplementary materials.



TABLE I
PERCENTAGE OF COMPILABLE SUGGESTIONS (CODE SNIPPETS) BEFORE AND AFTER USING FRANC’S STATIC FILTER

CodeParrot
(small)

CodeParrot
(regular)

InCoder
(1B)

CodeGen
(350M-mono)

CodeGen
(350M-multi)

CodeGen
(2B-mono)

CodeGen
(2B-multi)

PolyCoder
(160M)

PolyCoder
(0.4B)

PolyCoder
(2.7B) GPT3.5

Java
Before - - 0.15% - 5.86% - 7.43% 0.13% 0.29% 0.19% 0.89%
After - - 8.72% - 21.65% - 31.77% 11.30% 13.08% 14.66% 46.91%

% Increase - - 8.57% - 15.79% - 24.33% 11.17% 12.79% 14.47% 46.02%

Python
Before 22.22% 25.98% 55.91% 34.56% 37.06% 34.29% 40.49% 19.73% 21.33% 22.72% 57.75%
After 63.69% 68.96% 68.70% 68.39% 71.41% 73.28% 71.83% 59.25% 62.40% 65.02% 68.52%

% Increase 41.47% 42.99% 12.79% 33.84% 34.35% 38.99% 31.34% 39.52% 41.07% 42.30% 10.77%

and SpotBugs to discover code smells in Java code. In our
evaluation, we configured FRANC to employ the quality score
defined in Equation 2. By using this quality scheme, we can
move up in the rank of the 10 generated suggestions for a
prompt that is free of code/security smells.

Q(ci) =

{
1, if ci is compilable and free of smells
0, otherwise (2)

E. Repair by Generated Knowledge Prompting

Recall that if the first suggestion is below a quality threshold
(Q(c1) < τ ), then FRANC attempts to repair c1 through
prompt engineering. In our evaluation, we set the threshold τ
to 1, which means that FRANC will repair the first suggestion
if it has at least one smell in it (i.e., Q(c1) < 1). We configured
FRANC to use the error metadata provided by Bandit and
SpotBugs to repair the generated code for the top-1 suggestion
ranked by FRANC in the previous phase. Specifically, we used
the code smell’s description and location to craft a repair
prompt using the three different structures (P1, P2, and P3)
described in Section III-E which were sent back to the code
generation model to generate 10 suggestions again. In the end,
we have 1,023 repair prompts (341 for each prompt repair
structure). We then regenerate 10 suggestions for each of these
repair prompts using the same model generated by the code
under repair.

V. EVALUATION RESULTS

A. RQ1: Static Filter Effectiveness

Recall that FRANC applies a heuristic-based static filter to
clean the generated code and filter out uncompilable snippets
in Phase 3 . Table I shows the percentage of code snippets
that are compilable before and after FRANC applies its static
filter. We can see that the improvements in the percentage of
compilable suggestions range from 8.6% to 46% for Java.
Our static filter also improves the number of prompts with at
least one compilable suggestion. In the end, 22%, 69%, 73%,
55%, 54%, 51%, 61% of the prompts used for InCoder-1B,
CodeGen-350M-multi, CodeGen-2B-multi, PolyCoder-160M,
PolyCoder-0.4B, PolyCoder-2.7B, and GPT-3.5, respectively,
had at least one compilable Java suggestion after FRANC ap-
plied its filter (the increases ranged from 20% to 59%).

For Python, the improvement in the number of compilable sug-
gestions ranges from 12.8% to 43% for open-source models,
and for GPT-3.5, it is 10.8%. It also improves the number of

prompts with at least one suggestion (for open-source models,
the improvements range from 0.80% to 10.27%, and for
GPT-3.5, it is 6.43%). These improvements are smaller when
compared to Java because the models already produce 85.4%
prompts with at least one compilable Python suggestion, on
average. In contrast, the average percentage of prompts with at
least one compilable suggestion is only 1.7% for Java.

RQ1 findings: FRANC’s static filtering phase can increase
the compilation rates of the code generated by the studied
models. The improvements were more noticeable for Java
code, where less than 2% of prompts had at least one
compilable Java snippet, on average.

B. RQ2: Quality-based Ranking Effectiveness

In RQ2, we investigate FRANC’s effectiveness in ranking code
snippets. To do so, we calculated the Normalized Discounted
Cumulative Gain at k (NDCG@k) [64]. The NDCG@k mea-
sures how well k results are sorted as follows [65]:

NDCG@k =

∑k
i=1

reli
log2(i+1)

IDCG@k
(3)

The term reli in this equation indicates the relevance score
of ci (i.e., the code snippet c at the position i). It ranges
from 0 to 3, where 0 means the lowest relevant suggestion
and 3 indicates the highest relevant suggestion. This score is
computed as follows:

• If the code snippet ci is not compilable, the score is 0.

• If ci is compilable, but has a quality issue (i.e., Q(ci) = 0),
then its relevance score is 1.

• If ci is compilable and free of quality problems (i.e.,
Q(ci) = 1) but does not fully implement the prompt’s intent
(i.e., it is functionally incorrect), the score is 2.

• A code snippet ci that is compilable, does not have a quality
problem, and is functionally correct has a relevance score
equal to 3.

Given that we generated 10 suggestions per prompt, the value
of k is equal to 10. The IDCG@k in Eq. 3 is the ideal dis-
counted cumulative gain, which is a normalization factor used
to ensure that the NDCG@k ranges from 0 to 1. It is equal to



TABLE II
NDCG@10 SCORES FOR THE ORIGINAL MODEL RANKING AND FRANC RANKING

CodeParrot
(small)

CodeParrot
(regular)

InCoder
(1B)

CodeGen
(350M-mono)

CodeGen
(350M-multi)

CodeGen
(2B-mono)

CodeGen
(2B-multi)

PolyCoder
(160M)

PolyCoder
(0.4B)

PolyCoder
(2.7B) GPT3.5

Java

# Prompts 4 28 37 15 17 17 37
Model’s # prompts (rel1 = 3) - - 0 3 - - 8 1 1 1 18
FRANC’s # prompts (rel1 = 3) - - 0 7 - - 24 2 4 1 30

Model’s NDCG@k - - 0.0979 0.2330 - - 0.3019 0.1385 0.1525 0.2264 0.5775
FRANC’s NDCG@k - - 0.1319 0.3189 - - 0.4143 0.2312 0.2635 0.3174 0.6695

Python

# Prompts 13 14 3 17 18 21 19 17 18 20 11
Model’s # prompts (rel1 = 3) 1 0 1 0 2 6 4 1 2 2 1
FRANC’s # prompts (rel1 = 3) 1 0 2 5 3 8 6 1 4 3 6

Model’s NDCG@10 0.3297 0.4021 0.2012 0.3944 0.3630 0.4745 0.4738 0.3740 0.4200 0.4541 0.3742
FRANC’s NDCG@10 0.3853 0.4628 0.2419 0.4581 0.4671 0.5453 0.5335 0.4429 0.4941 0.5209 0.4630

the highest possible value achieved when all results are correct,
i.e., IDCG@10 = 3

log2(1+1)+...+ 3
log2(10+1) ≈ 13.631.

In total, we have 2,271 prompts with at least one quality
issue from different models and dataset combinations that
need to be repaired. Since it would be time-consuming to
manually analyze 22,710 code snippets (i.e., 2,271 prompts
× 10 suggestions), we instead randomly chose a subset of
326 prompts (95% confidence level, 5% margin of error) to
manually analyze. The number of prompts per model kept the
same proportions as the original set of 2,271 prompts.

The relevance scores 0 and 1 are automatically computed
based on the syntax check and quality score computed in
Phases 3 and 4, respectively. For the remaining snippets, the
relevance score is assigned manually by two researchers with 3
years of experience. They independently provide the rating by
judging the intention of the prompt and their reflection on the
generated suggestion. The Cohen’s kappa score of the inter-
raters’ agreement is 0.815, which indicates a strong agree-
ment between the raters [66]. We resolved the disagreements
through discussion. After resolving these disagreements, we
computed the NDCG@10 for FRANC and compared it with the
NDCG@10 for the original rank produced by the underlying
model.

Table II shows the average NDCG@10 for each model before
using FRANC (i.e., the original rank) and after using it. FRANC
increases the NDCG@10 for all models and languages. The
highest improvement for Java was from 0.3019 to 0.4143 for
CodeGen 2B-multi (11% increase). For Python, the highest
increase was from 0.3630 to 0.4671 for CodeGen 350M-mono
(10% increase). We observe a similar improvement trend for
both languages. The average NDCG@10 percentage increase
between FRANC and the original models’ ranking output is
9.6% for Java and 7% for Python. A paired t-test comparing
the NDCG@10 shows a statistically significant difference for
both languages (p<0.0001).

Table II also shows how many prompts we manually analyzed
per model and how many prompts in which rel1 = 3 (i.e., c1
is compilable, functionally correct, and smell-free) before and
after using FRANC. We find that the number of prompts with
rel1 = 3 also increases after using FRANC.

RQ2 Findings: FRANC’s quality-based ranking increases
the NDCG@10 (statistically significant difference) for
both Python and Java. FRANC also increases the number
of prompts in which the first suggestion is compilable,
functionally correct, and free of smells.

C. RQ3: Code Repair Effectiveness

After ranking the suggestions based on quality (Phase 4), if
the re-sorted top-1 suggestion (i.e., c1) still has a quality issue
(i.e., Q(ci) = 0), then FRANC repairs the problematic top-1
suggestion through prompt engineering (i.e., it creates a repair
prompt and sends it back to the model). Recall that we studied
three different prompt repair structures (P1–P3). Figure 2
depicts the percentage of prompts with at least one repaired
suggestion per model. Prompts with at least one snippet ci in
which Q(ci) = 1 are referred to as “good prompts”.

The prompt structure P2 is not performing well in repairing
Java code. It is not generating any good prompts for InCoder
and PolyCoder models. For Java, P3 is the best-performing
prompt repair structure. It can generate good prompts from
2.2% to 56.1% of the time. However, we see a different
scenario for Python in Figure 2. For Python, P2 is performing
better except for GPT-3.5, though the difference between P2
and P1 is very close. The prompt structure P2 can produce
good prompts from 35.71% to 79.2%. We also observe that,
overall, the models perform better in repairing Python samples
than Java samples. One possible explanation for this observa-
tion is that these LLMs are heavily trained/fine-tuned with
Python samples [2].

RQ3 Findings: FRANC can effectively repair a top-1
suggestion that does not have the highest quality. Different
programming languages may need different prompting
engineering structures, but FRANC can produce up to 80%
prompts with at least one good suggestion.

D. RQ4: Extra Overhead from the Framework

Table III summarizes the extra overhead taken by FRANC.
To ensure consistency of measurements, we used the same
machine (an Apple M1 Chip with 8 GB RAM) while running



Fig. 2. LLM-based Repair for Java and Python Benchmarks

TABLE III
TIME TO RUN EACH PHASE IN SECONDS

CodeParrot
(small)

CodeParrot
(regular)

InCoder
(1B)

CodeGen
(350M-mono)

CodeGen
(350M-multi)

CodeGen
(2B-mono)

CodeGen
(2B-multi)

PolyCoder
(160M)

PolyCoder
(0.4B)

PolyCoder
(2.7B) GPT3.5

Java

Filtering Phase - - 0.022837 - 0.016746 - 0.014988 0.014052 0.015473 0.014412 0.034090
Ranking Phase - - 1.708652 - 2.020211 - 2.195032 2.098262 1.804040 1.845289 2.087183

Repairing Phase - - 0.000023 - 0.000038 - 0.000037 0.000037 0.000040 0.000030 0.000045
Total - - 1.731512 - 2.036994 - 2.210057 2.112351 1.819553 1.859731 2.121319

Python

Filtering Phase 0.000053 0.000053 0.000055 0.000048 0.000048 0.000049 0.000048 0.000047 0.000047 0.000046 0.002357
Ranking Phase 0.085460 0.085794 0.062640 0.088703 0.084753 0.092222 0.085266 0.083774 0.083833 0.088145 0.087277

Repairing Phase 0.000098 0.000022 0.000011 0.000019 0.000015 0.000016 0.000018 0.000014 0.000027 0.000015 0.000021
Total 0.085610 0.085869 0.062705 0.088770 0.084816 0.092286 0.085331 0.083834 0.083908 0.088206 0.089655

the experiment. We can see that running all the phases for
Java; takes 1.984502 seconds on average (standard deviation
of σ = 0.06). For Python, it takes 0.084635 seconds, on
average, (σ = 0.003). The ranking phase was the most time-
consuming phase, as it needed to run external tools to compute
the quality score for each code snippet ci. Although FRANC
adds an overhead to filter, rank, and repair code snippets, it
does not require any fine-tuning of the models, which would
be time-consuming, costly, and resource-hungry.

RQ4 Findings: Although FRANC adds an overhead, the
extra time needed is less than 2 seconds (on average).
The ranking phase is FRANC’s most time-consuming
phase.

VI. DISCUSSION

Infilling vs Synthesis vs Chat-based Generation: Our work
investigates five models with six prompt datasets crafted from
different sources (e.g., programming problems [2], StackOver-
flow, etc.). CodeParrot [60], PolyCoder [55], and CodeGen
[51] focuses on program synthesis, i.e., they take a prompt as
input to generate code after the prompt. InCoder [62] models
focuses on infilling; it fills up with code between a prompt by
taking from both sides. GPT-3.5 [63] focuses on conversation-
style code generation. Although FRANC is geared towards
program synthesis, it still improves the performance of infilling
models like InCoder [62]. For example, our results showed
that without a static filter, no compilable suggestions were
produced by InCoder (§ V-A). FRANC was able to clean up
InCoder’s output using rules such that 22% of prompts had

at least one compilable snippet. Though the result of this
infilling model is not as great as other models (i.e., lower
NDCG@10 improvement), FRANC helped to show code with
higher quality in the first position.

GPT-3.5 [63] is optimized for multi-turn style conversation
with human feedback. It performs better than most of the
models for generating suggestions, and FRANC significantly
improves the ranking of the suggestions. This model better
understands different repair scenarios, whereas open-source
models respond to different scenarios depending on the pro-
gramming language.

Code Repairing using LLM: We used prompt engineering
techniques to repair code and security smells using LLMs.
We found that for Python, LLMs are better able to solve
issues related to XML validation vulnerabilities (i.e., CWE-
20: Improper Input Validation), using APIs from subprocess

library (i.e., CWE-78: OS Command Injection) and a Flask
application with debug=True (i.e., CWE-94: Code Injection).
Conversely, LLMs were less capable of solving issues related
to the Use of a Broken or Risky Cryptographic Algorithm
(CWE-327), Path Traversal (CWE-22), and Incorrect Permis-
sion Assignment for Critical Resource (CWE-732).

For Java, LLMs can resolve code smells related to the invoca-
tion of toString on an array, suspicious reference comparison,
and return value of method without side effect is ignored. How-
ever, LLMs can hardly repair infinite loops, array indexing out
of bounds, and useless control flow to next line.



VII. THREATS TO VALIDITY

A threat to the external validity of this work is that we only
investigated transformed-based [25] LLMs. However, current
commercial products are built based on these types of models
[46], [63]. Another external validity threat is that we used
default hyperparameters values with 128 tokens to generate
source code for the open-source LLMs and 512 tokens for
ChatGPT. Thus, we acknowledge that our results may not
generalize for other inference hyperparameters. However, our
work established the importance of a framework, FRANC, and
showed it was independent of the code generation models.
We also used two external tools (Bandit [67], and Spotbugs
[68]) in the framework. Practitioners and researchers widely
use these tools [7], [69].

A threat to the internal validity of this work is that we
manually analyzed ranked code snippets to compute their
relevance score (§ V-C), which is prone to biases. However, to
ensure that biases are removed, we conducted a peer review
of these analyses and reported our Cohen’s kappa score [66]
(which showed strong agreement). Another internal validity
threat is that we manually curated a new prompt dataset called
FRANC. However, since StackOverflow is a popular Q&A
website used by developers, this dataset can be a proxy for
real-world developers’ prompts.

VIII. RELATED WORK

Program synthesis refers to automatically generating a pro-
gram that satisfies the user’s intent given as high-level specifi-
cations or input-output examples [70]. One of the foundations
of program synthesis is deductive synthesis [71], [72], where
a task specification is transformed into constraints, and the
program is extracted after demonstrating its ability to satisfy
the constraints [70]. An example of this approach comes from
[73]. This work mapped text to abstract syntax trees using
recurrent networks. These abstract syntax trees were then
coded using attention.

Many LLMs have been produced with the goal of generat-
ing code, such as CodeBert [32], Codex [2], and CodeT5
[34]. GitHub Copilot [46], a closed-source tool for code
generation, uses the upgraded version of Codex to develop
an improved auto-complete mechanism. Additionally, other
recent works [3]–[5] focused on optimizing the process to
create, fine-tune, and infer the LLM-based code generation
technique. However, our work focuses on being a lightweight
approach to filter, rank, and repair code snippets in an existing
model’s output from a code quality perspective.

After GitHub Copilot’s commercial release to users [46], prior
works [2], [34] expressed their concern about security, privacy,
and bias in the generated code. A recent study found that
GitHub Copilot can produce unsafe (vulnerable) code [8].
Claudia et al. [74] systematically surveyed on AI models on
the security of code generation and verified the same concern.
Another study by [7] observed the presence of code smells
(including security smells) in code generation training sets and

their leakage to the models’ output. Another recent work [9]
conducted a user study to investigate the security implication
of GitHub Copilot as a large language model-based code
assistant. Rather than performing an empirical study on the
quality or security issues in the code generation paradigm,
our work introduces a novel framework to address quality
problems by reducing how often vulnerable and fine-tunes the
model to learn and understand the reasons and issues of

Other works have aimed to improve these code generation
models’ output by directly changing them. He and Vechev [16]
used property-specific continuous vectors to guide program
generation toward the given property without modifying the
LLM’s weights; specifically, they tried to generate secure
source code without compromising the program’s correctness.
However, this prior work is limited to certain CWEs and a
code generation model that needs fine-tuning. Ding et al. [18]
proposes a framework to self-refine an incorrect generation
according to available feedback in exploration mode. The
paper shows that LLMs’ self-refinement is ineffective at under-
standing the feedback and adjusting accordingly. The method
also fine-tunes the model to learn and understand the reasons
and issues of its past generation. In contrast, our work studies
how to resolve quality issues without re-training or fine-tuning
an LLM and is not limited to a certain quality attribute;
developers can configure FRANC’s quality score (§ III-D) in
any way they wish to give more weight to certain quality
attributes over the others.

IX. CONCLUSION AND FUTURE WORK

Although automated code generation tools can help develop-
ers to speed up software development, the generated source
codes must also be maintainable, high quality, and free of
code smells. As automated generated codes are mixed with
human-written code, it is necessary to ensure the quality of
the generated code so that it does not introduce reliability
issues. Our framework, FRANC, helps get vulnerability-free
output and comparatively high-quality source code. Our work
introduced a lightweight framework for improving the quality
of the generated code with practical usage of code repairing
using LLMs to remove quality issues. We demonstrated how
our framework performs by using it to improve the quality of
the Java/Python code generated by five LLMs. In the future,
we will evaluate FRANC using other programming languages
and learning models.
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